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ABSTRACT

A new discontinuous formulation named Correction Procedure via Recoiwsir(€PR)
was developed by Huynh [49] in 1D, and extended to simplex and hybrid meshes by Wang &
Gao [107] for conservation laws. As with all discontinuous methods suchheas
discontinuous Galerkin (DG), spectral volume (SV) and spectrardiite (SD) methods,
CPR method employs a piecewise discontinuous space. All of thebreaamfied under the
CPR framework, which is relatively simple to implement espigdiar high-order elements.
In this thesis, we deal with two issues: the efficient contjutaf broadband waves, and the
proper resolution of a viscous boundary layer with the high-order CPR method.

A hybrid discontinuous space including polynomial and Fourier bases isyedph the
CPR formulation in order to compute broad-band waves. The polynomia dasesed to
achieve a certain order of accuracy, while the Fourier lzasesble to exactly resolve waves
at a certain frequency. Free-parameters introduced in the Fbasies are optimized in order
to minimize both dispersion and dissipation errors by mimickingdikpersion-relation-
preserving (DRP) method for a one-dimensional wave problem.

For the one-dimensional wave problem, the dispersion and dissipation igoped the
optimization procedure are investigated through a wave propagatioysianaThe
optimization procedure is verified with a wave propagation analydigs optimization
procedure is verified through a mesh resolution analysis, which thieeselation between
the grid points-per-wavelength (PPW) and the wave propagation distdmeeerical tests
have been performed to verify the wave propagation propedreghé scalar advection

equation. The two-dimensional wave behavior is investigated through aprepagation
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Xiii
analysis too. The wave propagation properties are verified witireerical test of the two-
dimensional acoustic wave equation.

In order to understand the mesh size requirement to resolve a vismoodary layer
using high-order methods, extensive grid resolution studies are mpeddor both 1D and
2D viscous burger’'s equations with exact solutions. The skin fricsiarsed as an indicator
of accuracy for the resolution of a boundary layer. For the diffustomst the local
discontinuous Galerkin (LDG) method is employed to achieve (ihe 1)th order of
accuracy with a degrdepolynomial reconstruction.

For the 1D viscous burger’s equation, different grid sizes are datsinfior various
order CPR formulations given a certain error in the skin frickord different skin frictions
are obtained for a certain grid size. In addition, accuracy andergamwe properties are
studied for different distribution of solution points.

A 2D viscous burger’s equation with an exact solution is designedttohie resolution
for various orders of CPR formulations. The method of manufacturedosol(MMS) is
employed to provide an exact solution for code accuracy verificatioMMS, instead of
solving the original equation directly, the equation with an analysicafce term is solved.
Accuracy studies are also carried out.

Keywords: (Correction Procedure via Reconstruction), A Hybrid Dismoous Space,

Wave Propagation Analysis, Grid Resolution Study, Method of Manufactbodation.
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CHAPTER 1. INTRODUCTION

1.1 Overview of High-Order Methods

Computational fluid dynamics (CFD) has been made impressiveggogver the past
decades, due to advances in many fields including numerical sol@obmiques and
computer science and engineering. CFD tools are becoming morecaadiseful as current
computer hardware makes the simulation of complex fluid flow not feagible, but also
economical. Nowadays, nearly all commercial CFD solversbased on second-order
accurate numerical methods, either finite volume (FV) [1, 2, fditefidifference (FD) [17,
37, 77] or finite element [16, 40, 45-47, 66]. The Reynolds averaged N&tolees (RANS)
equations can be solved for “real world” configurations within a Fewrs on parallel
computing system.

Although these second-order solvers have proven very useful, they afficiest to
accurately predict many flow problems such as wave propagairoblems, vortex-
dominated flows, as well as large eddy simulation and direction nzahsimulation (DNS)
of turbulence. Second-order algorithms are mostly too dissipativestdve these problems
accurately. High-order methods are more suited for such applisasince they have much
better wave propagation properties.

High-order accuracy can be achieved with FV method on strdcgrids, by extending
the stencil that is used for the reconstruction of the solutiorablas at the cell faces.
However, the generation of structured grids is difficult for compmtajeometries. On the
other hand, the generation of unstructured grids is much easienark automated. High-

order methods suited for unstructured grids are required. Such mefhodsimate the
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solution by constructing a high-order polynomial of a certain degreeach cell. They are
compact methods because only local data on each cell and datanohidiate neighbors is
required for the evaluation of the fluxes, which makes such methsdg parallelizable.
The discontinuous Galerkin (DG), spectral volume (SV) and spectff@ratice (SD)
methods belong to the class of methods. An overview of DG, SV and &Dods is
presented here. A new discontinuous formulation named the CorrectomedBre via
Reconstruction (CPR) was developed on hybrid meshes, which shows efficrent

implementation especially for high-order elements.

1.1.1 Discontinuous Galerkin (DG) Method

The DG method as the most popular high-order method for unstructudsdiggiocally
conservative, high-order accurate and can easily handle irremdahes for complex
geometries. It was introduced by Reed and Hill [74] in 1973 for sohangteady
conservation law, namely the neutron transport equation. It was fiest fos unsteady
advection laws by Van Leer [94] in 1978. Important contributions to thelalement of the
DG method for hyperbolic conservation laws were made by Cocki8hu et al. [24-27],
with the development of the Runge-Kutta DG (RKDG) methods. A compriekengerview
of these RKDG methods can be found in a review article by CockburSland29]. Bassi
and Rebay demonstrated the DG method for the compressible Eulé-&nehuations in
obtaining high-order accuracy [9, 10, 13].

The DG method has been extended to solve the diffusion equation and the diffusive terms
of the N-S equations. These approaches include interior penaltafff?paches, see e.g.

Douglas and Dupont [33], the approach by Baumann and Oden [14-15] and the Gocal D
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approach by Cockburn and Shu [28], different approaches by Bassi[#l,aB] and the
recovery methods by Van Leer et al. [95-97]. Readers who arestagria these approaches
can refer to an overview by Arnold et al. [3], where their comisty, stability and order of
accuracy are discussed. The order of accuracy of all these ampgsotor the diffusion
equation is limited tdec + 1, with the degre& polynomial. Van Leer et al. developed the
recovery methods and the suboptimal based on a better understandiagbfsical nature
of the diffusion equation, which are capable of achieving higher oafeascuracy up to
2k + 2. There recovery methods do not fit inside the unifying framewwdposed by
Arnold et al. [3].

Many other researchers made significant contributions to thenBtBod. A quadrature-
free DG formulation was developed by Atkins and Shu [5]. Hu et al. jé8prmed an
analysis of the wave propagation properties of the DG method. glisad treatment of
curved wall boundaries for the Euler equations with the DG methodpvemosed by
Krivodonova and Berger [59]. Space-time implicit DG methods for hypierbohservation
laws were presented by Lowrie et al. [68], Van der Vegt amddéa Ven [93], and Klalij et
al. [55]. General overviews of the DG method can be found in lecturs hpt€ockburn et

al. [21] and by Hartmann [39].

1.1.2 Spectral Volume (SV) and Spectral Difference (SD) Method

The basic methodology of the SV method was first presented by Y¥84], along with
its application to one-dimensional scalar hyperbolic conservatioa 1aw2002. The SV
method was extended to two-dimensional scalar equations and rdiffienéing strategies

were studied to capture discontinuous solutions by Wang and Liu [101EVW heethod was
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extended to one-dimensional systems of conservation laws, along vafhieumzation study
of the SV partitions in [102]. The SV was applied to solve two-dimeas inviscid flow
problems, governed by the 2D Euler equations, by Wang et al. [108].appropriate
treatment of curved wall boundaries was addressed for 2D SV methédéabyg and Liu
[105], by using a high-order geometric mapping of the SV cebs wall boundaries. The
extension to three-dimensional systems of conservation laws wasdh#ed out by Liu et
al. [64], who applied the SV method to 3D computational electromagrn{€teM) problems.
Sun et al. [80] developed and presented a formulation of the SV methdtefd)-S
equations. Haga et al. solved 3D Euler and N-S equations with theef\od on Japan's
Earth Simulator Computer. Kannan et al [53] investigated diffef@miulations for the
discretization of diffusive terms with the SV method. Comparisohef method with the
DG method were made by Sun and Wang [82] and Zhang and Shu [114]. A guathed
formulation of the SV method in analogy with the quadrature-fremutation of the DG
method was developed by Harris et al. [36], is more efficiemt tiva standard formulation in
terms of computational time.

Chen [18-19] made a contribution towards the appropriate definition of hitgn-or
accurate SV partitions of simplex cells based on the Lebesmstant criterion formulated
by Wang and Liu [101]. Van Den Abeele et al. [86-88, 90, 92] performed Fourier arfafysis
1D, 2D and 3D SV partitions of the simplex cells to assess tberaay and stability
properties of the SV schemes. Harris and Wang [36] coupled thisania an optimization
algorithm to identify optimal SV partitions.

The first work on the method which is known as the SD method dates oai®%6 due

to Kopriva and Kolias [58] and Kopriva [57], who called the method ‘conteeva
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staggered-grid Chebyshev multidomain method’. Their formulation wagUadrilateral
cells and they solved two-dimensional compressible flow problemsdbas the Euler
equations. A general formulation of the method, including simplex cedls,given in 2006
by Liu et al. [65], who first called it SD method, and applied itwo-dimensional scalar
conservation laws and CEM problems. The SD method for simplex welts then
successfully extended to the 2D Euler equations by Wang €t04] fnd to the 2D N-S
equations by May and Jameson [70] and Wang et al. [108]. An implamantd the SD
method on hexahedral cells for the 3D N-S equations was reportediroetSal. [83].
Different approaches for the discretization of the diffusive seimthe N-S equations with
the SD method, were investigated by Van den Abeele et al. [91]. Hataalg[44] reported
an implicit space-time implementation of the SD method. Van denléle¢al. proved that
the SD method is independent of the positions of its solution points and tfeaintiD SV
and SD methods are equivalent. Huynh [49] proposed a set of 1D SV asth&Des based
on Legendre-Gauss quadrature points and Jameson proved that theéablafersarbitrary

orders of accuracy [70].

1.1.3 Correction Procedure via Reconstruction (CPR) Method

Recently, a new differential discontinuous formulation for conservéds named the
Correction Procedure via Reconstruction (CPR) is developed on hybrid meshes [107], which
is inspired by several other discontinuous methods such as the ®&t&gered grid
multi-domain), SV and SD methods. All of them can be unified under tlref@Phework,

which was relatively simple to implement especially for high-order et
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The CPR formulation was developed in [107] under the name of fluxgeaotion (FR)
[49] and under the name of lifting collocation penalty (LCP). TI@P Lformulation is
directly inspired by the FR method and can be viewed as an extewisthe original FR
method to simplex elements. Instead of directly reconstructingflthe function, a
“correction field” due to interface flux jumps is computed in LCRe3e two formulations
have been renamed CPR, which is referred to FR and LCP.

The degrees-of-freedom (DOFs) are the state variables reohutihn points (SPs) in the
CPR formulation, where the differential form of the governing equnais solved. As a
result, explicit surface and volume integrals are avoided. Thef@fnulation is among the
most efficient discontinuous methods in terms of the number of operafibesCPR

framework is given in the next chapter.

1.2 Obijectives of the Present Work

In this thesis, two issues are addressed for the CPR methwd.isOthe efficient
computation of broadband waves, another is the proper resolution of a viscous ypoundar

layer with the high-order CPR method.

1.2.1 Computation of Broad-band Wave

The stability and accuracy of the CPR method depend on the choibe gblution
approximation space and weighting functions. The basis function should Gi&esp&
define a CPR scheme. Mostly, the space of polynomial with dégoeéess is chosen, which
leads to ak + 1)th order accuracy scheme for convection equations. In the present stud

hybrid bases including polynomial and Fourier bases are introduced adodak
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approximation space in order to better resolve broadband wave propageildams.
Fourier bases are used such that the CPR scheme can exauathtesa wave equation for
certain wave numbers and resolve broadband wave numbers, and polyrasesmbkre kept
with the objective of achieving a given order of accuracy.

We borrow the ideas from the central and upwind dispersion-Relatesefing (DRP)
schemes in determining the parameters of the Fourier ttageximize the resolvable wave
numbers given a certain error threshold [84, 85]. The basic idea Bf $8Reme is to
optimize the scheme coefficients for the high resolution of shoresvavith respect to the
computational grid instead of the truncation errors. The optimizptimeess has to allow the
normalizedL, norm of both dispersion and dissipation errors to be as close to zero as
possible for a certain integration number range. This method ischarfrequency optimized
CPR formulation (FOCPR).

The Fourier analysis is performed to assess the accuracyadiliysproperties of the
CPR schemes with hybrid bases, by following the methods by HiafgBVan den Abeele
[86]. Mesh resolution analysis is presented to study the depenalfepomts-per-wavelength
(PPW) requirement on the number of wavelengths, by mimickingrbeedures in [110].
Numerical tests are performed which show that the CPR scheitre®ptimized Fourier

bases can resolve waves more accurately than the classic polynsaggl ba

1.2.2 Resolution of Viscous Boundary Layer

The resolution of viscous boundary layers is studied in 1D and 2D fdnigheorder
CPR method. The space of polynomial with dedras applied as the weighting function,

which should bék + 1)th order accuracy scheme for convection equations.
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The different formulations play an important role for the diffuseguation simulation
[79, 113]. Most of them are derived from similar approaches devefope¢de DG method,
which can be found in Arnold et al. [3]. The most popular three appreackeapplied in
high-order CPR method, which are based on the Local DG (LDGpagprproposed by
Cockburn and Shu [28],the first and second approaches of Bassi and B&Hay9)
proposed by Bassi and Rebay. The order of accuracy study isnpedfdor the different
diffusion approaches to investigate their properties.

For both 1D and 2D viscous burger’'s equation, the skin frictions are stadig¢de
resolution criteria. Numerical skin frictions are comparechwite exact skin frictions for
various orders of CPR schemes.

For 2D viscous burger’'s equation, the method of manufactured solution (ME\8)l¢s
a general exact solution for accuracy verification. In MMS emstof solving the original
equation directly, the equation with an analytical source tesoli®d. In the present study,

only tensor products of one-dimensional polynomial are applied on rectangular meshes.

1.3 Outline of the Thesis

The outline of the remainder of this thesis is as follows. In ch&ptidhe framework of
the CPR method is given. In chapter 3, free-parameters introducéourier bases are
optimized by mimicking the procedure of DRP to minimize both dispersiohdissipation
errors for the CPR schemes. An extensive study of the stability and @cpuoaerties of the
CPR schemes with hybrid bases is presented. A mesh resolutigsisama performed to
verify the optimization procedure. Several numerical testes amormed to verify the

Fourier analysis. In chapter 4, the two-dimensional wave propagatagses is studied
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based on structured quadrilateral grids with tensor product bases. A two-dinaasioustic
wave is used to test the two-dimensional wave propagation andlyschapter 5, the
resolution of viscous boundary layers is studied in 1D and 2D for tjiednder CPR
method. The skin frictions are studied as the resolution cri@riboth 1D and 2D viscous

burger’s equation. Conclusion remarks are given and future works are presenteden@hapt
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CHAPTER 2. CORRECTION PROCEDURE VIA RECONSTRUCTION

The differential discontinuous formulation for conservation laws namedCorrection
Procedure via Reconstruction (CPR) was developed to improve tbierstii or stability of
several well-known high-order methods, including the DG method, staggecdedngiti-
domain (SG), SV and SD methods. It unified all these methods intm@esnodal or
collocation-type differential formulation. There is a one to coenection between different
formulation and special polynomials in 1D or multiple dimensions witensor-product

basis.

2.1 Framework of CPR formulation

The CPR formulation can be derived from a weighted residual metht@isforming
the integral formulation into a differential one. The hyperbolic eorstion law can be

written as

00 V-EF(Q)=0 2.1
5+-(Q)— (2.1)

with proper initial and boundary conditions, whelres the state vector, anfd is the flux
vector. The computation domaihis discretized intdV non-overlapping triangular elements
{V;}}L,. LetW be an arbitrary weighting function or test function. Multiplylg. (2.1) with

an arbitrary weighting functioW and integrating over an eleméff we obtain

f <a—Q+V-F"(Q))WdV= f 9 yay + Wﬁ(Q)-ﬁds—f VW - F(Q)dV =0
Vi at Vi at av; Vi

(2.2)
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Let Q; be an approximate solution to the analytical solupon elementV;. On each
element, we assume that the solution belongs to the space of polighohaagree: or less,
i.e., Q; € Pk(V,), (or P¥ if there is no confusion) with no continuity requirement across
elements interfaces. Let the dimensionPdf be K = (k + 1)(k + 2)/2. In addition, the

numerical solutiorQ; is required to satisfy Eq. (2.2)

a i = -
iwmuf WE(Q; )-ﬁdS—f VW -F(Q; )dV =0 (2.3)
Vi at aVL' Vi

The surface integral is not properly defined because the numsoicéibn is discontinuous
across element interfaces. Following the idea used in the Godunbadn#te normal flux
term in Eq. (2.3) is replaced with a common Riemann flux, e.g.,

FMQ) = F(Q; ) 7 ~ Flim (Qiy Qi 7)) (24)
where Q;, denotes the solution outside the current elenteninstead of Eq. (2.3), the

approximate solution is required to satisfy

an n g o —
o Wav + WELn(Q; ,Qip,7)dS — | VW -F(Q; )dV =0 (2.5)
Vi av; i

Vi

Applying integration by parts again to the last term of the above LHS, wia obta

j 2de+f WV - F(Q; )dV+j W[ERm(Q; , Qi) — F™(Q; )]dS =0 (2.6)
v; ot v; av;

Here, the test space has the same dimension as the solutienapdis chosen in a manner
to guarantee the existence and uniqueness of the numerical solution.

Note that the quantity - ﬁ(Qi ) involves no influence from the data in the neighboring
cells. The influence of these data is represented by the above boumegral, which is also

called a “penalty term”, penalizing the normal flux differences.
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The next step is critical in the elimination of the tastiction. The boundary integral
above is cast as a volume integral via the introduction of aécion field” onV;, 6; €

PE(V),

wsdv = | W[F"]ds 2.7
Vi av;

where [F"] = F2,.(Q; ,Qiy, @) — F*(Q; ) is the normal flux difference. The above
equation is sometimes referred to as the “lifting operator”, lwiias the normal flux
differences on the boundary as input and a memb@*@f;) as output. Substituting Eq.

(2.7) into Eqg. (2.6), we obtain
0Q; S
f l_at +V-F(Q; )+6; |[Wav =0 (2.8)
Vi

If the flux vector is a linear function of the state variatenV - F(Q; ) € P*. In this
case, the terms inside the square bracket are all elemehfs Because the test space is

selected to ensure a unique solution, Eq. (2.8) is equivalent to

aait"+v-ﬁ(Qi)+5i =0 (2.9)

For nonlinear conservation laws; F(Q; ) is usually not an element 8. As a result,

Eq. (2.8) cannot be reduced to Eq. (2.9). In this case, the most obviously ishmiqroject

V- F(Q; ) into P*. Denotell (V - F(Q )) a projection o¥ - F(Q; ) to P¥. Once choice is

)

Then Eqg. (8) reduces to

n(v-F(q ))wav =f V- F(Q Ywav (2.10)

i Vi
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00Q;
at

+ n(v-ﬁ(Qi )) +6, =0 (2.11)

with the introduction of the correction field; , and a projection ofl (V-ﬁ(Qi )) for

nonlinear conservation laws, we have reduced the weighted reswminalldtion to a
different formulation, which involves no integrals. Note that&pr defined by Eq. (2.7), if
W € Pk, Eq. (2.11) is equivalent to the DG formulation, at least for lineaservation laws;
if W belongs to another space, the resultiiig is different. We obtain a formulation
corresponding to a different method such as the SV method.

Next, let the DOFs be the solutions at a set of solution p(Slﬁ’cs){?l-j} (j varies from1

to K), as shown in Fig 2.1. Then Eqg. (2.11) holds true at the SPs, i.e.,

0Q; ;
at

+1; (V- F(Q, ) +6,,=0 (2.12)
whereTl; (V-ﬁ(Qi )) denotes the values m‘(v - F(0; )) at SPj. The efficiency of the

CPR approach hinges on how the correction fieldand the projectiorl (V . ﬁ(Qi )) are

computed. To computé; , we definek + 1 points named flux points (FPs) along each
interface, where the normal flux differencg®'] are computed, as shown in Fig 2.1. We
approximate (for nonlinear conservation laws) the normal flux éifieg[F™] with a degree

k interpolation polynomial along each interface,

[F™ly ~ L[F™, = ) [P 8 (213)
l

where f is an face (or edge in 2D) index, ahis the FP index, anff” is the Lagrange

interpolation polynomial based on the FPs in a local interface coadifat linear triangles
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with straight edges, once the solutions points and flux points are ctioseosrection at the

SPs can be written as

@ r1[F"]¢,1S¢ (2.14)

Figure 2.1. Solution points (squares) and flux points (circles) for a triarejafaent of
k =2

wherea; (; are lifting constants independent of the soluti§injs the face aredy;| is the
volume of V;. Note that the correction for each solution point, nangly is a linear
combination of all the normal flux differences on all the faceshefcell. Conversely, a
normal flux difference at a flux point on a face, $fyl) results in a correction at a solution
pintj of an amounty; ¢, [F™]f,S¢/1V;l.

Next, we focus on how to computH; (V - F(Q; )) efficiently. A brute-force

implementation based on Eq. (2.10) requires high-order integral quadratamd is
expensive. Two more efficient approaches are developed in Ref. 42e\aedad here for

the sake of completeness.
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Based on the solution at a SP, the flux vector at each SP camipeited. Then a degree
k Lagrange interpolation polynomial for the flux vector is used to cqumate the

(nonlinear) flux vector

FQ ~ 1 (F(@0) = ) 15" MF(01)) (2.15)

J

whereLfP(?) Is the Lagrange polynomial based on the solution p(ﬁﬁﬂﬁ. After that, the

projection is computed using

n(v-FQ))=v-1.(F@))= Z VL - F(Qy)) (2.16)
J

In this case,Il (V-F"(Ql-)) is a degreek — 1 polynomial, which also belongs tB*.

Numerical experiments indicate that there is a slight loscafiracy with the LP approach,
but it is fully conservative [103].
We recognize that the divergence of the flux vector can be comangdgtically given

the approximate solution using the chain rule, i.e.,

OF(Qi) N 0G(Qi;)  0F(Qi;)0Q;; N 9G(Q:;) 0Q;;
d0x ox 00 d0x aQ dy

V-F(Qi)) =

_0F(Qy)
== VO, (2.17)

Whereg—g is composed of the flux Jacobian matrices, which can be computedicaiigl

Then projection is approximately by the Lagrange interpolation polyalarhthe flux vector

divergence at the solution points, i.e.,

n(v-£@n) ~ ) LP@V-F(Q:) (218)

]
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Numerical experiments indicate that the CR approach is much asmurate than the LP
approach, at the expense of full conservation [103].

Substituting Eq. (2.14) into Eq. (2.12) we obtain the following CPR formulation

a0Q; ; R 1
a_;] +10 (v - F(Q )) A Z Z a; ;1 [F™M 7.5 = 0 (2.19)
L feov; 1
N 7 B °
o o
v o .

Figure 2.2. Efficient arrangement of solution (squares) and flux points (yifaids = 2

It can be easily shown that the location of SPs does not affect the numeherakesfor linear
conservation laws [90]. For efficiency, therefore, the solution pants flux points are
always chosen to include corners of the cell. In addition, the solutiots@re chosen to
coincide with the flux points along cell faces, as shown in Fig Rt@(avoid any solution
reconstruction. Furthermore, in computations with hybrid meshes, thedlois are always
the same for different cell types for ease of interfacarirent, as shown in Fig 2.2(b). For
the 2D cases presented here, the Legendre-Lobatto points along the edged aethe flux
points for both triangular and quadrilateral cells. Due to specialcehof DOFs, the

reconstruction cost in CPR is completely avoided.
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2.2 Treatment of Viscous Terms

2.2.1 Basic Framework

The discretization of viscous term in the DG method has been studetsigely in the
literature [3,8,9,18,28,32,50,72,97]. The extension of the CPR formulation to viscoss flow
follows existing compact approaches developed in [9,18,50,72]. The Navier-Stokes equations
can be written as

aa—(g +V-F(Q)=V-FE¥(Q,VQ) (2.40)

where ﬁ"(Q, VQ) denotes the viscous flux vector.
First, following [8], we introduce a new variabe
R=vQ (2.41)
Let ﬁi be an approximation at on Vi, andﬁi € (P*, P¥). Many studies have found that the

obvious choice o’rﬁi = VQ; is not appropriate. Instead, the computationﬁpfneeds to
involve data from neighboring cells. The CPR formulation of Eq. (2.40Eand2.41) on a

linear triangleV; can be expressed as

0Q;,; S
"ot +1I (V ) F(Qi))
> - 1
+H}7 (V . FU(Qi’ Ri)) + m Z Z a}',f-l([Fn]f,l - [Fv'n]f,l)sf =0 (2.42)
L feov; 1
- 1 .
Rii = Qi+ 1y Z Z ;7. [Q™ — Quil p7iy Sy (2.43)
L feav; 1

wherell” is the projection operator for the divergence of the viscous flux vecidt, tand
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[Fo™]r = FP(Q8™, V™) - iy — F¥(Qu R,)| T (2.44)
with Q7™ andVQz°™ the common solution and gradient on interfgceespectively, and
Qi,j,1 is the solution within celi on FP ! of face f or the trace ofQ; on f. The
computational ofl/ (V . ﬁ”(Qi,ﬁi)) follows the LP approach. First, the viscous flux vector
at each solution point is evaluated using

EV = FY(Qij, Ry ) (2.45)
After that, a Lagrange polynomial for the viscous flux vectduuigt with the values at all the

solution points, i.e.,
I(F?) = Z FP.LSP (2.46)
J
Finally the divergence of this polynomial is used as the projection

(V- F2(0u R)) ~ V- 1(Fr) = ) By - vis” (2.47)
7

Various schemes for viscous fluxes differ in how the common sol@igfi* and the

common gradien?Qz°™ are defined. It is sometimes to use a face based notatiothjch w

Qr = Qi andQ;f = Q4.

2.2.2 Bassi-Rebay 1 (BR1)

In Bassi and Rebay original approach [9], the simple averages of the solution at both

sides of the face were used for the numerical fluxes, i.e.,

- +
Q™ = w (2.48)
VQ; + VQ}
ijfom = M (2.49)
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2.2.3 Local Discontinuous Galerkin (LDG)

The idea of LDG [28] was proposed by Cockburn and Shu. The solution frosidenef
a face is used as the common solution, while the corrected mrdéicien the other side is

used as the common gradient.
Q™ = Qf, (2.50)
VQ§™ = VQ7, (2.51)
We also can alternately take the left and right limits¢faandVQ. In other words();, and
VQ}, are taken as the common solution and common gradient.

The discretization of diffusive terms has been discussed by mnesegrchers over the
past decade. More compact and more accurate approaches weopelbwehich include the
second Bassi and Rebay approach (BR2) [8], the I-continuous approé&ttiyiy [50], the
interior penalty [33], and CDG [72]. In our study, only BR1 and LDGcamsidered, and

LDG already provides good results.
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CHAPTER 3. ONE-DIMENSIONAL FREQUENCY-OPTIMIZED CPR

FORMULATION

In this chapter, the stability and accuracy of the CPR method fdm&Br problem is
analyzed. Hybrid bases including both polynomial and Fourier basespplied into the
CPR method rather than the classic polynomial bases, with objettigsolving broad-band
wave propagation problems. Free-parameters introduced by Fourierdoasastimized to
minimize both the dispersion and dissipation errors by mimickindgd®e method [84, 85].
This method is named as frequency optimized CPR formulation (FP@RRnalysis of the
wave propagation properties of FOCPR is applied to assess bothhihity stad accuracy of
the scheme. The mesh resolution analysis is applied to vieefggtimization procedure by
following the ideas [110]. Numerical tests are preformed to stiatv CPR scheme with
optimized hybrid bases can resolve broad-band wave more accutaelyhat with the
classic polynomial bases.

1D FOCPR is studied in this chapter, and the methodology is exten@d&ditothe next

chapter.

3.1 Framework of Wave Propagation Analysis

3.1.1 Basic ldea

The methodology of wave propagation analysis is introduced in tloigsorse The
approach is following the procedures by Hu [43] and Van den Abeele [Bé]simplest 1D

conservation law that models wave propagation is used as the mololelhpr The 1D scalar
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advection equation with periodic boundary conditions and a harmonic wave as initi@rsoluti

is given as
X raog 3.1
ot " “ox G
u(x,0) = etk* (3.2)

wherea is the positive wave speed. A Fourier wave of the form
u(x, t) = fie!(kx—wt)+Igt (3.3)

is introduced in this linear advection equation, which represents a sials@ive train with
a wave numbek and an angular frequenay Eq.(3.3) is substituted into Eq3.1), and it is
found that the following exact dispersion relation is

9p =0 and w =ak (3.4)
Jr is the dissipation rate, which determines the exponential growtbeocay of the
amplitude. Non-dimensional quantities are used in our analysis. Tdrerree length scale
for the non-dimensionalization is set /s and the time scale is= %x. The dimensionless

parameters are expressed as

K = kiAx (3.5)
Q=0 3.6
=w— (3.6)

whereK and( are the non-dimension wave number and frequency, respectivelyexdtie
dispersion relation is given as follows with non-dimensionalization.

Q=K (3.7)
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If the spatial derivative in the linear advection equation isreliged in space on a
uniform grid with cell sizeAx and the Fourier wave of the form Eg.3) is applied in the
discretization equation, then the resulting numerical solutions doeshbegt this exact
dispersion relation any more, but a modified dispersion relation. mbdified dispersion
relation is close to the exact one, which is a measurééoadcuracy of the spatial scheme.
The modified dissipation rate should be non-positive, otherwise the csolutill grow

exponentially and thus divergence.

3.1.2 Extension to 1D CPR

To Eq. (3.1), &k + 1) degree of freedom (DOFs) method will be applied on a uniform
meshAx for CPR formulation, while classic finite difference methodgehanly one DOF.
On a local coordinaté € [-1,1] for each elemenk;. The approximated; = X721 W;Q; ;

can be written as a function §f andW; is the shape function. On the boundaries between

two elements, a Riemann is used as the common flux term.

u;(1) + ——u (1)

. . (3.8)

FR(w (1), u (1)) = a<1 + B 1-8 )

In (3.8), f = 0 corresponds to a central flux apd= 1 corresponds to the upwind flux.
Upwind flux is applied in our work.
For 1D scalar advection equation e@—1,1] , the CPR scheme is reduces to the

following matrix form

4 k+1 k+1

u.

d;m + Z Npjthioj + Z Npjtio1,j =0, (m=1,,k+1) (3.9)
j=1 j=1

The matrix componenw,;} and N,?U- are given in Appendix D.
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Substitute of the expression of a Fourier waye, t) = fie! **~©O+9rt into Eq.(3.1), the
numerical dispersion relation determined for upwind flux is given as

det(—IQ+e KNP+ N°) =0 (3.10)
Eq. (3.10) hask + 1 solution, corresponding to the+ 1 eigenmodes of the numerical
system. The quantity-1Q is called Fourier footprint andR = RR¢ +iR™, and the
imaginary partR'™ is a measure of dispersive properties of the scheme, whereasltpart
RRe represents the diffusive behavior which should be non-positive to keeghbmes
stable.

Note that a CPR scheme is using a polynomial approximation of degreave with
non-dimensional wave numbeks ranging from- (k + 1)t < K < (k + 1) are captured,
since there arg + 1 degrees of freedom per element. For classic FV method, theraraye
is -m < K < m, which corresponds to the one degree of freedom per element by such
methods. To make a fair comparison between the FV and the diftedemt CPR schemes,
the plot for the CPR method should be downscaled with a factot, taking into account
the higher number of degrees of freedom of CPR.

The diffusive and dispersive properties are then plotted versus thenwelzer in Fig
3.1by using the @ order piecewise polynomial bases as local spaces in CPR methhds
uniform solution point distribution. Fig 3.1 show®® andR™ for the fourth-order CPR
scheme(k = 3), when an upwind Riemann flux is used. For this schdfneganges from
—41 to 4. WhenRR® andR'™ are plotted versus the dimensionless wave nurdbénere
arek + 1 values for eaclk, which correspond to thle + 1 eigenvalues of equation (3.10).

The eigenvalue solution shapes should be examined to identify theglorsés. From Fig
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3.1 of the mode shapes, the actual wave number to which a certaimadigebelongs can

easily be determined.
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Figure 3.2. Diffusion error and dissipation error of tfleodder CPR schemes
(RRe andR™ versusk)

In Fig 3.2, the curves are only shown for positk/elue to the symmetry. It is clear that
the scheme is stable, because the dissipation éfrés always non-positive. Notice that
the scheme becomes less accurate for increasing wave numbegresant 4 order CPR
scheme with a piece-wise polynomial as bases has good wave airopggroperties for

dimensionless wave number upkox 5.
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3.2 Hybrid Bases Including Both Polynomial and Fortier Bases

The piecewise polynomial space is the common chosen approximatios, syaen
discontinuous high-order method is used to solve partial differemfahtions (PDES).
However for some PDEs and initial/boundary conditions, piecewise poigisomay not
provide the best approximation to the solutions, such as the boundaryataydrighly
oscillatory problems. The approximation spaces can be differémr@gpect to each element
and also to different timg so the local approximation spaces can be any linear spaces.

Cockburn [30] et al. proposed the use of the locally divergencesfilgaomial space to
resolve the Maxwell equations and achieved better results campatie the classical
piecewise polynomial bases in DG method. The singular perturh@atbiems are solved by
using exponentially fitted schemes by of Kadalbajoo and Patiddr §® Reddy and
Chakravarthy [73]. Christofi [20] used non-polynomial spaces in lesakentially non-
oscillatory (ENO) reconstructions for solving hyperbolic consewmdaws. The DG method
bases on exponential functions and trigonometric functions is studidd% in order to
obtain better approximation for specific types of PDEs and iflibahdary conditions. For
the boundary layer problems, the slope of the solution near the boundasyyisarge,
exponential functions achieved better results than the classic pobinimctions. For the
highly oscillatory problems, the solution is better approximated by trigonanietictions.

In our proposed method, hybrid bases including both polynomial and Fbasges are
developed to resolve broad-band wave propagation problems, rather than stiealcla
polynomial bases. Polynomial bases, Fourier bases and hybridarasésfined as follows,
respectively.

T € span(1,x,x2,x3 ) (3.11)
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T € span(sin(al * x), cos(al * x), sin(a2 * x), cos(a2 * x) -+ ) (3.12)

T € span(1,x,x2,x3 -+, sin(al * x), cos(al * x), sin(a2 * x),cos(a2 * x) -~-)  (3.13)
(al, 02, ---) are Free-parameters. The Fourier bases are applied herdeinto resolve a
relatively large wave number for a wave propagation problem, \ilélgpolynomial bases
are applied here in order to keep a certain order of accuracy.

Due to Fourier spaces, the exact dispersion rel@ienK is exactly satisfied at a certain
K. For example if the bas€ = (1,x,sin(2*x),cos(2 xx)) is applied, the analytical
physical dimensionless dispersion relation shouldQbe K =k« Ax =2%2 =4. This
means that the dispersion err@®?¢ — K)and dissipation error®’™ should equal to zero at

non-dimensional wave number 4.
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Figure 3.3. Dispersion erro(®k¢ — K) and Dissipation errot®'™ versusk
forT = (1, x,sin(2 * x), cos(2 * x))
In Fig 3.3, both dispersion errof®?¢ — K) and dissipatioR’™ are plotted with hybrid
basesT = (1,x,sin(2 * x),cos(2 x)). It shows that dispersion and dissipation errors are
equal to zero at non-dimensional wave number 4. Uniform point distribtioged in this

case. Due to this specific property, we can design CPR schathespecific hybrid bases to

exact simulate a wave equation with certain non-dimensional wave numbers.
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3.3 Optimization of Hybrid Bases

In this section, free-parameters in the hybrid bases arenigapd to minimize both
dispersion and dissipation errors by mimicking the similar idealispersion-relation-
preservation (DRP) [84, 85]. The wave propagation characterigteesencoded in the
dispersion relations of the governing equations according to wave priopagaalysis. It is
expected that the numerical solutions of high-order formulationshaile the same wave
propagation characteristics as those of the solutions of the govezqiragions if both
systems of equations have the same dispersion relation. So mininmoenical dispersions
and dissipations are required to get an accurate amplitude and pmirtasenierical
calculation of wave propagation [84, 85]. The optimized schemes sutte agntral DRP
[84, 85] and the upwind DRP [111, 112] schemes are to assure the transfilenscheme

be a good approximation of that the partial derivative over a certain ranggehwaber.

3.3.1 Dispersion-Relation-Preservation (DRP) Method

The main idea of DRP schemes is to optimize high order finitereince scheme not
only meets the usual conditions of consistency, stability and comgergbut also has the
same or almost dispersion relation as the original partiardiitial equations. As we know
that the dispersion relation is a functional relation between thelanfrequencies of the
wave and the wave numbers of the spatial variables.

In developing finite difference approximation of partial derivagjvine standard way is
to use a truncated Taylor series. But from the wave propagationgbwiietv, the motivation
is to preserve the dispersion relation, so the finite differempgeo&imation should be

constructed so that the Fourier transform is preserved. In other,itondsuld be desirable
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to have a finite difference scheme with nearly the same Fdraiesform in space or time as
the original partial derivative. The DRP methodology is given here briefly.
The approximation of the first-order spatial derivatg\Zeon uniform grids for a finite

difference method is given by

<au> 12M (x; + jAx) 3.14
ox). = ox ijajuxi JjAx (3.14)

where M values off to the right andV values off to the left of this point. The finite
difference methods will be referred as the standard schemtte itoefficientsa; are

determined by equating coefficients of the same powefsx afith Taylor expansion series.
For DRP method, the coefficients are to be chosen in a different way. The basic idea of

DRP is that the coefficients are determined by requiring thei€r transform of the finite
difference scheme on the right of (3.14) to be a close approxinuititve partial derivative
on the left. The finite difference equation (3.14) is a specs# oathe following equation in

which x is a continuous variable:
ou 1 M
—(x) = —Z aju(x + jAx) (3.15)
X =N
The Fourier transform and its inverse of a function are related by

i(a) = %jmu(x)e‘i“xdx (3.16)

u(x) = %Imﬁ(a)ei“xda (3.17)

The Fourier transform of the both sides of (3.18) is

1 M -
iail ~ <EZ Naje‘“fo>ﬁ (3.18)
j=-
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By comparing the both side of equation (3.21) to get the following equation

—i M .
7= EZ- _aei (3.19)
J=-

The left side is the effective wave number aick is a function ofaAx with the period2.
a; were chosen to minimize the integrated error E defined in (12ffder to assure that the

Fourier transform of the finite difference scheme is a goodoappation of the partial

derivative over the range of wave numbers of interest.

/2 /2 M N 2
E= f |laAx — aAx|? d(alAx) = j iK —Z aje®| dK (3.20)
-1/2 -1/2 j=-N
The condition thaFE is a minimum are
oF =0, j=—-NtoM 3.21
aa] - Y ] - 0 ( . )

(3.21) provides a system of linear algebraic equations by whichotficentsa; can be

easily determined.

3.3.2 Optimization of Free-Parameters of Hybrid Bases

Free-parameters in the hybrid bases for the CPR methaghtamazed by mimicking the
similar idea of DRP [84, 85] to maximize the resolvable wave numiven a certain error
threshold. The following two conditions are applied.

* The optimization process has to allow the normalized valu€;Qf/N — K/N and

Qgr./N to be as close to zero as possible for certain integration wavieensui is the

order of DOFs.

e e
E= f IQIm/N—K/ledK+/1f |Qp./N|2dK (3.22)
0 0
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The weighth is set as 0.2 to balance the norm of the truncated errors of dispersion and

30

dissipatione is a predetermined optimized range of wave numbers.

* In order to quantify the resolution of the scheme, set the dispeasid dissipation

errors to less than 0.5%, i.e.[43]

|0 — K| < 0.005 and |Qge| < 0.005 (3.23)
Table 3.1. Optimization free-parameteof Fourier bases
for T = (1, x, sin(ax), cos(ax))

Integration rangée) a E - Dispersion E-diffusion E

m~3.14 1.4 2.1477e — 09 2.7483e — 08 7.6444e — 09
5*m/4 =~ 3.93 1.7 1.6503e — 07 1.0139¢ — 06 3.6781e — 07
3*xm/2 = 4.71 2.1 3.8702e — 06 2.4832e — 05 8.8367e — 06
7 *m/4 = 5.50 2.4 6.1540e — 05 2.6556e — 04 1.1465e — 04

2xT =~ 6.28 2.7 6.5403e — 04 2.1424e — 03 1.0825e — 03

Table 3.2. Maximum resolvable wave numker

ForT = (1, x, sin(ax), cos (ax))

Integration range a K,
m~ 3.14 1.4 3.9336
5*m/4 = 3.93 1.7 4.2336
3xm/2 = 4.71 2.1 4.8336

7 *m/4 =~ 5.50 2.4 2.0336

2*xT =~ 6.28 2.7 1.6336
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In Table 3.1, hybrid basdg, x, sin(a  x), cos(a * x)) are applied in CPR method with
fourth degree of freedom. E-dispersion represents the dispersion tiaegraors, and E-
dissipation means the dispersion integration errors. E reprdbentispersion errors plus
0.2 = dissipation errors, which are defined in Eq. (3.22). Free-parasnetarTable 3.1 are
found to minimize the integration err@ through numerical searches for a certain wave
number integration range. In other words, the CPR schemes wittshown in Table 3.1
obtain the minimum dispersion errors with respect to different range

In Table 3.2, the maximum resolvable non-dimensional wave numkgrsare
determined using Eqg. (3.23) for eaglwith respect to a certain integration wave number e.
This means when the non-dimensional wave numbers are smalteKth&q. (3.23) is
satisfied. In other words, when the non-dimensional wave numbeeasegrthank,, the
dispersion and dissipation errors are greater h&fo. So K, is called the maximum
resolvable non-dimensional wave number.

From Table 3.2, we can see tliatincreases and then decreases as the integration range
e increases.a = 2.1 is referred as the optimized free-parameter, which minsnibe
integration errorE' over a relatively large wave number integration range 4.71, arte at t
same time the resolvable wave numiierreaches 4.83, with which both dispersion and
dissipation errors are less than 0.5% defined in Eq. (3.23). In other,wbedmaximum
resolvable non-dimensional wave numkegiis equal to 4.83 corresponding to the integration

rangee = 3 xm/2, anda = 2.1 gives smallest dispersion errors.
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The same procedure is applied for the higher DOFs schemet.0 is the optimized

free-parameter with the integration wave number range 8.60(]fpt,x2,x3,sin(a*

x),cos(a * x)), and al = 4.5and a2 = 3.0 are the optimized free-parameters with the

integration wave number 9.42 f@l,x,sin(ocl x x),cos(al x x), sin(a2 * x), cos(a2 * x))

with the dispersion and dissipation errors to less @&d4.
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The upwind CPR schemes with the optimized hybrid bases are compdhedhe

corresponding polynomial bases, Tam & Webb’s central DRP and Zhu&ige& DRP in

terms of dispersion and dissipation errors. In order to compareediff®OFs schemes,

normalized values are applied here. For high-order CPR schemfesimupoint distribution

is used.
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dissipation errorg./N versusK /N for 6 DOFs hybrid bases with more Fourier terms

In Fig 3.4, the upwind CPR formulation with the optimized hybrid baBes

(1,x,sin(2.1*x), cos(Z.l*x)) is compared with the corresponding formulations. The

normalized dispersion errors and dissipation errors are plotted vemuowlized non-

dimensional wave numbers. The optimization scheme shows less disparsienthan the

polynomial base and the Tam & Webb’s central DRP scheme, but a littlegeit thspersion

errors than Zhuang & Chen’s upwind DRP scheme. It is able tovecded waves with non-

dimensional wave numbers as high as about 1.3 which is very cldsedevien stencil finite

difference schemes, although it is a four stencil scheme.

In Fig 3.5, the optimized six stencil schefiiex, x2, x3, sin(4.0 * x), cos(4.0 x x)) has

obviously less dispersion and dissipation errors than the corresponding palyhases,
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central DRP and upwind DRP. And it is able to resolve the wavéds neib-dimensional
wave number as high as about 1.6.

In Fig 3.6, the optimized six stencil scher@ax,sin(B.O * x),c0s(3.0 * x), sin(4.5 *
x),cos(4.5 * x)) has less dispersion and dissipation errors than those of
(1,x,x2,x3,sin(4.0 * x), cos(4.0 x x)). And it is able to resolve the waves with non-
dimensional wave number as high as about 1.8. From all above analysis, the high¢herders

schemes are and the more Fourier terms are used, the |gssidis and dissipation errors

there are.

3.4 Mesh Resolution Analysis

In this section, the mesh resolution analysis is applied here ty Wee optimization
procedure by following the ideas [51, 110]. The number of grid points per wavelrW) (
is presented, with objective of accurately simulating wave projpagaver large distance.
As we know that numerical errors arise from both the spatiatrentemporal discretization.
They include both phase and amplitude errors, which depend on the wave suhderid
spacing, the Courant number, and the direction of propagation relative tgridheThe
dependence of the phase speed on the wave numbers results in aludigpErsion. This
section presents the grid resolution required to achieve a splewiéic of accuracy as a
function of the propagation distance expressed in terms of the watvefendhe previous
optimized hybrid bases. Emphasis is on methods requiring under 60pgrts per
wavelength (PPW) for accurate simulations with propagation desaoic200 wavelengths.
The purpose is to aid in verifying the optimization procedure forGR® method with

hybrid bases. Here we only consider the accuracy of the int€f& scheme without
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considering boundary conditions. For the analysis, only the standard dee tone
discretization is used as time marching methods.

The mesh resolution analysis is also based on Fourier analysiw imbsence of
boundary conditions. In one dimension, the errors produced by the numemnmalditons
are function of the non — dimensional wave numbeand the courant numbér= ah/Ax.
In multi — dimensions, the errors depend on the direction of propagal#inegdo the grid.
The mesh resolution analysis is based on the amplification fa€toyC) = w,,41/Um,

wherem is the current time step amd + 1 is the next time step. PPW is the points per wave

wavelength

length andPPW = = 2m/(kAx).
The local amplitude and phase errors are, respectively

Error, =|o| — 1 (3.24)

Error, = —% -1 (3.25)

Where ¢ = tan"(0y,/0r.), andoy, and oz, are the real and imaginary part of
respectively. Criterion for comparing schemes is based on thel gloiitude and phase
errors which are

Error, = ||o|PPW*/C¢ — 1| < 10% (3.26)

PPW * ¢

Error, =nx + 27‘[| <10% (3.27)

Wheren is the number of the wavelength travelled. Using the above formitlasa very
small Courant number gives the errors for the spatial operatoe.dh the following figures,

the various methods are compared in terms of the PPW required pgobkée global
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amplitude and phase errors less tHa% as a function of the number of wavelength
traveled.

In this section, we only consider the errors produced by the sppgahtors. The error
from a spatial discretization is often plotted in terms of thediorensional wavenumber.
Plots of the local phase and amplitude errors can be much mowmdimgvand provide a
stronger physical connection. The global errors are even easigetoret. In studying the
dependence of the PPW requirements on the number of wavelergtiiet, the emphasis
is on the wavenumber present in the simulation which is most poodlyedsamong those
wavenumbers which are deemed to be significant. The dependenceP&f\theequirements
on the number of wavelengths is a reasonable measure for rgglactrid density and
reveals the implications of optimization. In this section, only Spaparators are considered
by setting Courant numbers small enough.

In Fig 3.7, point per wavelength (PPW) requirement are presemteghivind CPR with
respect to(l, x, sin(a * x), cos(a * x)). a = 2 is superior up to a distance of travel about
45 wavelengths based dr0% global phase error criterion and abast wavelengths based
on 10% global amplitude error criterion and requires about less hanPPW. Such
behavior is typical of optimized schemes. Usually aggressive agatiion leads to excellent
performance for small distances of travel but poor performamcéomger distances. This
property agrees with the previous analysis that the optimizeghémr@eneterx = 2.1, which
is close ta2, shows good dispersion and dissipation properties with the relativgé/wave
number given a certain resolution error criterion. In Fig 3.8, the P&Wirements for
upwind CPR schemes will1, x, x?,x*, sin(a * x), cos(a * x)) are presentedr = 4 shows

typical optimization behavior which requires abalt PPW for about#t0 wavelength travel
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distance based ol0% phase error criterion and which requires abBpuitPPW for abou5

wavelength travel distance basedl®¥ amplitude error criterion.
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In Fig 3.9, the PPW requirements for CPR schemes (l\]jtba,sin(al * x),cos(al *
x), sin(a2 * x), cos(a2 * x)) are presentedal = 3.0 and a2 = 4.0 shows the typical

optimization behavior too and the propagation distance is short, thatesegbou#t.0 PPW
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for about125 wavelength travel distance base on 10% phase error criterioncanick rebout

5.0 PPW for about 40 wavelength travel distance based&mhamplitude error criterion.
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hybrid baseil,x, sin(al * x),cos(al * x), sin(a2 * x), cos(a2 * x))

The PPW analysis matches the optimization analysis perfacityboth methods can be

used to verify each other. More Fourier terms there are, ther fl@BRW are required. For

optimized schemes, when the degree of freedom increases, not onfgwleeBPW require,

but also the propagation distance is longer. Because the optirirdes are optimized for

a given range of wave number, they required fewer PPW if the gabpa distance is

relative short. As the number of wavelength traveled increasadttamtage of the optimized

schemes diminished as the required PPW increase. However if RRVE is required, the

use of optimized scheme not only gives most accurate resultssbutesllts in significant

saving of CPU time.
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3.5 Numerical Tests

3.5.1 Exact Solution for 1D Wave Equation with Sine Wave as an Initial
Condition

According to previous Fourier analysis, the exact dispersionaelat= K is exactly
satisfied at a certaik because of Fourier bases in hybrid bases. This problem gndddio
verify the performance of the wave propagation characteristi@ R formulation. The
order DOFs hybrid base(s, x,sin(ax),cos(ax)) are applied here and 1D convective wave

eqguation is considered.

UL %0 =1 3.28
ot " %ox - 9T (3.28)

On the uniform mesh with the initial condition is given as follows
u(x,0) = sin(m * x) (3.29)
7 is the physical wave number for this initial condition. The pilaces designed to catch the
initial physical wave number are given as follows.
e First set grid size is equal fox, and calculate the non-dimensional wave number in the
initial condition in Eq.(3.29).

Ky =k *Ax =m* Ax (3.30)
where the non-dimensional wave number is equal to the value (theghyave number
times the grid size).

e Choose a 4 order DOFs hybrid basfl, x, sin(a * x), cos(a * x)) and calculate the
non-dimensional wave number on the standard computational domain relateel to t

hybrid bases.
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yields
Ky=ax+xAf and Aé =2 — K, =2xa (3.31)

e Finally set these two non-dimensional wave numbers equal to eachtotget the

parameters in the hybrid bases

yields
Ki=K, — a=(mx*Ax)/2 (3.32)

= Exact = Exact

& 1,x,sin(x),cos(x) P ¢ 1,x,5in(2*X),c0S(2*X)
2 @ 1 .x,sin(pi*x/2),cos(pi*x/2) A [ ] l,x,s?n(pi*x),cos(pi*x)
0 1 x,5in(3*x),c0S(3*X) B 1,x,sin(4*x),cos(4*x)

(a) (b)

Figure 3.10. Exact solution for 1D wave equation with sine wave as an initial condition

At =0.01,T = 60, (a)a = (m* Ax)/Af = E,AX =1,(b)a=(m*xAx)/AE = T, Ax =2

Fig 3.10 shows that the designed spaces exactly numericallyagintié wave equations

(3.28) with the initial condition(3.29). (a) The spaceél,x,sin((n*x)/z), cos((m *x)/

2)) is exactly simulating the wave equation when= 1 (b) The spacg1, x, sin(m *

x), cosm * x) is exactly simulating the wave equation whien = 2.

3.5.2 A Benchmark Problem-CAA Workshop (2004)

A benchmark problem is applied here to verify some properties obdlses. The
governing equation is the scalar wave equation with unit wavel ggedefined as equation
(3.28) with the following initial condition

u(x,0) = [2 + cos(B * x)]exp[—In2(x/10)?], B = 1.7 or 4.6 (3.33)
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Two different frequencie§ = 1.7 and § = 4.6 are considered, and s&k = 1 for an
equivalent 1 DOF. At this grid resolution, the high frequency wavieedded in the initial
condition only has abow.7 and1.9 points-per-wave (PPW). It is therefore a challenge for
any numerical scheme to adequately resolve the high frequency wave.

The hybrid bases including Fourier bases which can resolve brahdlaave propagation
problems are applied in order to get more accurate resultsiohhilenge situation. In order
to get a better simulation for this problem, firstly find tippr@ximation spac(a, x,sin(a *
x),cos(a*x)), which can exactly simulation the initial high frequency wave itimmd
cos(B * x), then apply this approximation space for the wave equation withinitia
condition of Eq(3.33).

For the casg = 1.7, if we setAx = 3 and follow the procedures described in the last
section to ge = 2.55 for the 4" DOFs hybrid base§l, x, sin(a * x), cos(a * x)). It is
expected that the hybrid bases with= 2.55 can exactly simulate the wave equation with
the initial conditioncos(f8 * x). The time integration was carried out using a fourth-order
four stage Runge-Kutta scheme. A constant timeGtfpwas used for all cases.

In Fig 3.11, the numerical results of spa¢es, x2, x%),(1, x, sin(2.55 * x), cos(2.55 *

x)) and (1, x,sin(4.0 * x), cos(4.0 * x)) are presented. It is obvious that= 2.55 show
much less dissipative behavior. This confirms our expectation.

In Fig 3.12, the solutions of the upwind CPR scheme with the optinagzecbximation
space B DOFs (1,%,x2%,x3, sin(4.0 * x), cos (4.0 = x) )and(1, x, sin(3.0  x), cos(3.0
x), sin(4.5 = x), cos(4.5 * x)) are compared with the™6order polynomial approximation

space for initial conditions for botlf = 1.7 and 4.6 with T = 500S and Ax = 5. Both
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hybrid bases show better simulations than the polynomial appreaimspace. It is clear
that the more Fourier bases there are, the more accuratesthis are. All of results agree

with our expectation.
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O 1 x,5in(2.55*X),c05(2.55*X)
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S
o

Figure 3.11. Numerical solution of 1D wave equation with the initial condition (3.33) for

B = 1.7 (T = 450S and Ax = 3, 4 DOFs upwind CPR scheme)
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Figure 3.12. Numerical solution of 1D wave equation with the initial condition (3.33)

(T = 5008 and Ax = 5, 6th DOF upwind) and first rows = 1.7 and second roW = 4.6
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3.5.3 An Artificial “Broadband” Wave

The upwind CPR schemes are tested for an artificial “broadbaade, which is The
upwind CPR schemes are tested for an artificial “broadband” wawveh is followed the
same procedure in [99]. The composed three waves are given as following

Ug(x) = sin(m * x/3) + sin(mw * x/6) + sin(mw * x/12) (3.34)

the formation of a "broadband" wave

combined

=== |ong wave
medium wave
===z short wave

-10 -5

xXOr

Figure 3.13. The formation of a “broadband” wave

The three waves represent short, medium and long waves and thengévelare, 12
and 24 respectively. The initial form is displayed in Fig 3.13. The comrdputal domain is
chosen to bé—-12,12] andAt = 0.1S andT = 24S.

In Fig 3.14, the numerical results of the upwind CPR are comparedesijikct to bases
(1, x,x2, x3,x* x>), and (1,x,x2,x3,sin(4.0 * x),cos (4.0 * x)) for Ax = 6.0. Points-per-
wavelength (PPW) is equal &0 for the short wave. According to mesh resolution analysis,
PPW requirement for(1,x,x% x3,sin(4.0 x x),cos(4.0 xx)) is about 4.5 and PPW
requirement for(1, x, x2, x3, x*,x°) is about 6.0. Both PPWs are less than 6.0. If the short
wave dominants the errors, it is expected that there is no big difference fomtbestnémes

according to PPW analysis, which agrees with the Fig 3.14.
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In Fig 3.15, the numerical results of the upwind CPR are comparkdespect to bases
(1, x,x%, x3,x* x>), and (1,x,x2,x3,sin(4.0 * x), cos (4.0 * x)) for Ax = 8.0. Points-per-
wavelength (PPW) is equal to54for the short wave. The optimized hybrid base’s PPW is
about 4.5 and the polynomial base’s PPW is about 6.0. Therefore, it istezkplat the
optimized hybrid base should perform better than the corresponding pofynbase,
because only the former base’'s PPW is close to the PPWeeguit for the initial short
wave and the latter's PPW/0 is much larger than the initial short wave PPW requirement
4.5. In Fig 3.15, the simulation results agree with our expectationhbr @tord, the hybrid

base performs better than the corresponding polynomial bases.
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1 /\}/‘ | g 0.05F% 2 Y : o~
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Figure 3.14. Comparison of a “broadband” wavasat= 6.0
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Figure 3.15. Comparison of a “broadband” wavaxat= 8.0
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CHAPTER 4. TWO-DIMENSIONAL WAVE PROPAGATION

ANALYSIS

4.1 Wave Propagation Analysis

The extension of the wave propagation analysis to 2D is describéds iection. We
consider the 2D linear advection equation with periodic boundary conditioicking the
ideas by Hu [43] and Van den Abeele [87]

6u+ 6u+ au_o a1
ot T P ax T Yoy T (4-1)

with @ = [ax ay]T =al = a[cosy simp]T. The vectord is the wave propagation velocity
and is defined by the Cartesian componentanda, or defined by the amplitude and the
direction of the wave propagatign A plane harmonic wave is given
u(t,7) = a(t) = exp(lk> -7 — lwt) (4.2)
with 7 = [x y]T andk = k[cos@ sinf]T, and@ is the orientation of the wave. Substituting
the above equation in{@.1), the following exactly dispersion relation is obtained:
w = ||la|lkcos(yp — ) (4.3)
The numerical dispersion relation corresponding to a discretizatiotheoflinear
advection Eq(4.1) on a uniform quadrilateral cell grid, as shown Fig 4.1, with the upwind
CPR formulation is compared with the exact dispersion relatiotutty $he dispersion and
dissipation behavior. As for the 1D analysis, all quantities in tkigian are non-
dimensional. In the following sections, the upwind CPR formulation witlrihybases for

guadrilateral and triangle cell grids will be discussed.
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The stability and accuracy of the upwind CPR formulation with idylhases are
discussed in this section. The computational domain is divided into getdaelemeng™"
by straight linesc = x,, andy = y,,,, i.., E™ = [x,,, Xp+1] X [V Ym+1], @S shown in Fig

4.1 Set, = &y, and 6y = Xpy1 — Xp, 6y = Xy — Xy -

Ay -

A

v

Ax

Figure 4.1. Rectangular mesh pattern and local coordinate system.
Then using upwind scheme and tensor product bass[er, 1] x [—1,1], Eqg.(4.1) can be
written in the following form.

Uy m
ot

+ @ * [N%Upy + N Yy g |+ ay * [MOUp + My [ =0 (44)
U, denotes the vector containing all the solution points in the localeale—1,1] x
[—1,1]. The matrix elementy°, N~1, M° andM~1 are given by in the Appendix D.
N° N~1,M° andM~1 are defined in Appendix D. By supplying equati@n2) and tensor
product basis into Eq4.4), the numerical dispersion relation is given by
det (—Iﬁ + cosip(e~HKeosO N1 + NO) + sinyp(e~KsmOp~1 MO)) =0 (4.5
The determinant of the coefficient matrix must be zero for a maaltsolution of wu,

that determines the dispersion relation for the semi-discrietizatjuation. From Eq4.5) Q
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should be found and compared to the non-dimensional exact freq@endych is given by
the exact dispersion relatidh = Kcos(6 — y). Equation(4.5) hasN * N eigenvalues and

N =k + 1, corresponding to the eigenmodes of the numerical system. Asasathe one
dimensional analysis, the quantig/(l is also called Fourier footpri® = RR¢ + IR'™ of

the spatial discretization. The imaginary Rt is a measure of the dispersive properties of
the scheme, whereas the real gRff reflects the diffusive behavior and should be non-

positive for stable schemes for allK6f6 and .

Dispersion Error Dissipation Error

22 T T T T 2 i i i i | I i I
2or Exact —_ © | -2'7;-!-&-;;"7’-'7‘\ | | I P
2 18| weaneeens 1,x,5in(x),cos(x) I e e B e = A i Bl K
B r 1,%,5iN(2*x),cos(2*x) B ,4777%777:7,,:,,,:,,,,:';,,‘\,,:,,,,:,l,if
g § B T S S R B B N IR S
| | | | | [ |
e u _8,,,L,,,\,,,L,,L,,J,,,L,\\,L,,ﬂ,,*
o] Q | | | | | 2 AN R
E § 107 Exact i
[ | [
E{ 3 ! C12H ceereeeen 1,X,Sin(X),cos(x) T
i . Y ¢
= | = -14j 1,x,sin(2*x),cos(2*X) =, :f - - %* -
| ! | | ! ! 6| ====— 1,,sin(3*x),cos(3*x) - bl
0 | 1 | 1 1 1 1 L - -18 Il | | | | | 1 1
o 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18
Wave number Wave number

Figure 4.2. Dispersion and diffusion error as a function of the wave number

for0 =y =m/6

Fig 4.2 shows the eigenvalues of E4.5) as a function of the wave numbérat =y =
/6 for 4" DOFs with hybrid tensor product bases. The choicé sfi corresponds to a
propagation direction parallel to the orientation of the plane wave.eXhet dispersion
relation is given byl = K in this case. For this choice, the wave length in the propagati
direction is minimal, leading to the most severe test of tharacg of the scheme. The wave

propagation is anisotropic, especially for under-resolved waves hecaoncluded from the
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right figure of Fig 4.2 that the scheme is stabletfer iy = /6, sinceR?¢ are always non-

positive.
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1.008
1.006|% L1k
$ 1.004 3
Q © 105
0 1.002 %)
(] (]
I ? e,
£ — g '
0.998 Exact 1 o — Exact
. 1,x,s!n(x)*,cos(x) N A B Pt 1,%,5in(x), cos(X)
0.996 1x,sin(2%),C0s(2"%) 1 0.95¢ 1,%,sin(3*X),c0s(3*X)
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Figure 4.4. Phase spe€R?¢/K) as function of 8 (= ¢) forK = 1.5 m

In Fig 4.3, phase sped®R?¢/K) is plotted as a function of ang(@ = ) for K = =,
and it is obvious that errors @I, x, sin(x), cos(x)) < errors Of(l,x, sin(2 * x), cos(2 * x))
< (1,x,sin(3 * x),cos(3 * x)). In Fig 4.4, phase speé®g./K) is plotted as a function of
angle(6 = y) for K = 1.5 = and it is shown that that errors @lf x,sin(2 * x),cos(2 *

x)) < errors Of(l, x,sin(x),cos(x)) < (1,x,sin(3 * x),coS(3 * x)). It is obvious that the
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errors of non-dimensional wave numbdér= m are less than the errors Kf= 1.5 =t for

dispersion errors.
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Figure 4.5. Dissipation rafR'™) as function of 8 (= ¢) forK = &
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Figure 4.6. Dissipation rafeR'™) as function of 8 (= ¢) for K = 1.5 m
In Fig 4.5, dissipation ratéR'™) is plotted as a function of ang(é@ = ) for K = =,
and it is obvious that errors 6f, x, sin(x), cos(x)) < errors of(1, x, sin(2  x), cos(2 * x))
< (1,x,5in(3 * x), cos(3 * x)). In Fig 4.6, dissipation raterR'™) is as a function of angle
(6 =) for K = 1.5 and it is shown that that errors (@, x, sin(2 * x), cos(2 * x)) <
errors of(1, x, sin(x), cos(x)) < (1,x,sin(3 * x),cos(3 x x)). As same as the phase speed
errors, that the errors of non-dimensional wave nunkber m are less than the errors of

K = 1.5 = m for dissipation errors.
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It shows that the accuracy of different schemes depends onrediffieon-dimensional
wave numbers. It can be observed that the dissipation error ivalgidarger than the
dispersion error. All of above four Figures indicate that both the ™igpeand dissipation
errors are the largest in the direction6of 0 or 8 = /2, which can be verified by the
dispersion relatior(4.5). And the dispersion relation in the directiébr=0or 6 = /2 is

the same as the corresponding previous one-dimensional analysis.

4.2 Numerical Test

4.2.1 Two-Dimensional Acoustic Wave Propagation

The propagation of acoustic waves generated by an acoustic psiseulated in 2D.
The acoustic perturbations have small amplitude compared to thenarfibie variables.
The exact solution to the LEEs for these problems can thus be sisedeference. The

governing equations for the 2D non-linear Euler equations

90 + o + oF _ 0 4.6
ot  odx 9y (4.6)
whereQ, E and F are vectors given by
P pu pv
_Jpu _ ) put+p _) W
Q - p‘,] ) E - puv )] F - pvz + p (4‘.7)
pE u(pE +p) v(pE + p)

with p the mass densityy andv the velocity components im andy directions andg the
pressure. The total enerdyis defined by the following equation

1 p u?+v?
E=y_1;+ > (4.8)
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wherey is set to 1.4 which is the ratio of specific heat to air. Thgal solution is an

acoustic pulse with a Gaussian profile and is set as same as one by Kris [67, 69]

D= po <1 +0.001 * exp (— (x—05)" +2(y _ 0'5)2>> (4.9)
%

P =Pt (o p) (4:10)

u=0 (4.11)

v=0 (4.12)

And the ambient pressure, mass density and the half-width of the Gaussian pdilen
as follow
Po=1 po=1 1,=0.05 (4.13)

The exact solution of the LEESs for the acoustic pressure field is given as

2 1.2 +co 2
Poe(t,x,y) = P — P, =0.001*C°°2b ] exp (— (%) )cos(s‘coot)]o(s‘t)fds‘ (4.14)
0

with n = \/(x —0.5)?2 + (y — 0.5)%2 and], is the zero-th order Bessel function of the first
kind which is used as a reference solution referring to [44] andj4§6]the halfwidth of the
Gaussian profile and is set@§5.

The domain under considerations is a square with an edge length cequa, {t0,1] x
[0,1]. This domain is discretized by a uniform Cartesian grid. The catipas are carried
out on three different structure gri@s x 5), (10 x 10) and(20 x 20) on a square domain
[0,1] X [0,1]. Roe’s scheme is used as approximate Riemann solver. Tinohingawas
done with a fourth-order, four stage R-K scheme. And all numeestd are carried out with
At = 0.0001s, T = 0.3S and Gauss-Lobatto points are used as distribution points for each

element for CPR schemes. Structured quadrilalérad 10 grids are given on left of Fig 4.7
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and pressure contours are given on the right of Fig 4.7 which is basetsongeoduct basis
with approximation spaced,x,x?,x3). Wave has not yet reached the boundary of the
computational domain al' = 0.3S and thus the far field boundary condition has no
influence on the solution.

The profiles of the acoustic pressyre= 0.5 atT = 0.3S along with the exact acoustic
pressure solution of the LEEs are plotted based on the upwind CPResdbased on hybrid
bases with different parameters. We focus on the comparison oédb#srbetween the

optimized hybrid bases and other hybrid bases.

P
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1.0001

1.00008

0.8

1.00006
1.00004
1.00002
1

0.99998
0.99996
0.99994
0.99992

0.6

0.4

0.2

e L L e L
X

Figure 4.7. Structured quadrilatedd x 10 grids (left) and pressure contours (right) based
on tensor product basis with polynomial approximation spaces
The numerical results of 4DOFs are compared in Fig 4.8 and Fig 4.9. In fig 4.8, errors
of the optimized basedl, x, sin(2 * x), cos(2 * x)) are smallest among all of approximate
bases shown on the fig based thx 10 grids. This property agrees with the previous
analysis that the optimized hybrid bases shows better dispeasd dissipation properties
when non-dimensional wave numbers of the schemes are given imia cange. In Fig 4.9

the optimized base still performs better than the corresponding pabinbase based on
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20 x 20 grids. The difference between the optimized hybrid base andhéetotbrid bases

becomes smaller. It can be expected that the polynomialviidgeerform best when the

grids are fine enough.
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Figure 4.8. Pressure distributiomat= 0.5 on10 x 10 grids withAt = 0.0001s, T = 0.3S

for 4 DOFs
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Figure 4.9. Pressure distributiomat= 0.5 on20 x 20 grids withAt = 0.0001s, T = 0.3S

for 4 DOFs
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Exact
— - — - = 1,x,x"2,x"3,sin(2*x),cos(2*x)

— — = 1,x,x"2,x"3,sin(4*x),cos(4*x)
——— - 1,x,5in(3*x),c0s(3*x),sin(4*x),c0s(4*x)
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Figure 4.10. Pressure distributionyat= 0.5 on5 X 5 grids withAt = 0.0001s, T = 0.3S
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Figure 4.11. Pressure distributionyat= 0.5 on10 x 10 grids withAt = 0.0001s, T =

0.3S for 6 DOFs

The numerical results of 6DOFs are compared in Fig 4.10 and Fig 4.11550n5 and

10 x 10 grids. In both Fig 4.10 and Fig 4.11, the optimized b@ex,sin(B.O*

x),c0s(3.0 * x), sin(4.5 = x), cos (4.5 * x)) performed better than the optimized base

(1,x, x%, x3, sin(4.0 * x),cos(4.0 xx)), and the latter performed better than the
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corresponding polynomial bases. It is clear that when the grids kefinen enough, the
polynomial bases will perform best. These results agreeowittprevious Fourier analysis,
that the optimized hybrid bases show advantages in a certain non-dina¢ngave number

range. It is obvious that the more Fourier components there armoteeaccurate results

there are.
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CHAPTER 5. GRID RESOLUTION STUDY FOR VISCOUS FLOW

In this chapter, extensive grid resolution studies are performetditr 1D and 2D
viscous burger’s equations with exact solutions, with the objectivad#rstanding the mesh
size requirement to resolve a viscous boundary layer using high+oketbods. It is well
known that the mesh size, which is defined from non-dimensional disaincey* = 1,
gives accepted results to simulate viscous boundary layer probl@i{ éder finite volume
method. For high-order CPR formulation, what grid siZeis required to match the results
from the 2% order finite volume method with* = 1.

1D and 2D burger’s equation are used as the viscous boundary layer model problem. Skin
friction is used as the indicator of accuracy for the resolufoa boundary layer. LDG is
employed to discretize the diffusion term to achieve(the- 1)th order of accuracy with a

degreek polynomial approximation.

5.1 1D Convection and Diffusion Equation

5.1.1 Introduction to 1D Convection and Diffusion Equation

1D viscous burger’'s equation, which is solved as a boundary layer prablgien as
follows
U +u-uy, —uu,, =0, ye (1) (5.1)

with the following initial and boundary conditions:

u(y,0) = —tanh (23]—#) (5.2)

u(0,t) =0, u(l,t) = —tanh (%) (5.3)
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The problem has the following exact solution:

y
0) = —tanh (2) 54
u(y,0) anh |z, (5.4)
whereu = 0.01.
0
-0.2
-0.4
>S5
-0.6
-0.8}
-1 . . . .
0 0.2 04 06 0.8 1

Figure 5.1 Exact solution of given in (5.4)

As we known, the viscous boundary layer regions remain closed to theslnddce. The
exact solution(5.4) in Fig 5.1 shows a boundary layer characteristic, because thetyeloci
changes to a constant value in a small regions closed to tiaéyrtoordinates. We use this
1D viscous burgers equation to study the grid resolution for various oode@PR

formulation. In the boundary layer, the skin friction coeffici€nts defined as

G =72 (5.5)
5pUS

where,, is the local shear stresg,= 1 is the fluid density and/,, is the free-stream
velocity (usually taken outside of the boundary layer or at the.ifleé wall shear stress,

is given by
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T, = fi (a—u) (5.6)
ady =0
whereyu is the dynamic viscosity, andis the flow velocity parallel to the wall. In this case,
the wall is referred toy = 0, theu is the flow velocity. AndU, = —1 is the velocity
outside of the boundary layer. Non-dimensional wall distance foalebaunded flow is
defined in the following way

_Ayxu,

+

y (5.7)

v

whereu, is the friction velocity at the nearest waly is the distance to the nearest wall and
v is the local kinematic viscosity of the fluigtt is often referred to simply as y plus and
commonly used in boundary layer theory and defining the law of the wall.
The friction velocityu, is defined as
Uy =T /p (5.8)
In order to get the skin friction coefficients based on the non-dimasisivall distance, steps
are given here to follow.

e Step 1, set non-dimensional wall distance= 1 to deriveAy, which is the distance to

the wall.
Ay * u, ytxv v
y » > A== (5.9)
Substitutg(5.8) into (5.9) to get the following equation
v v
Ay =— = (5.10)

Ue vV Tw/p

Apply (5.6) into (5.10) to get
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Ay = voo_ v
JTw/p \/M(g_t;)xzo In

e Step 2, sef\y as the grid size, which is derived from the exact solution,gasl size to

(5.11)

calculate the shear stress for different order of CPR schanteg® order finite volume
scheme.
e Step 3, different grid sizAy are found for different order CPR formulation to achieve a

certain skin friction.

5.1.2 Different Viscous discretization Methods

Treatment of viscous terms has been discussed in chapter 2. $adtia, two different
viscous formulations are tested. The first formulation is the BiRXHe other formulation is

the LDG [28].

5.1.2.1 Bassi-Rebay 1 (BR1)

Bassi and Rebay [9] proposed a method to discretize the diffusmonwdrich is named
as BR1. Both unknown and its gradient are approximated in the polynappiedximation
functions. Both the common numerical flux and auxiliary vari&bee taken as the average

between the two interface states.

_Ri- + Ry
2

com __ ui— + ui+

i = > and

u R l{:om

(5.12)

The accuracy of the™order CPR formulation is tested in this case. Gauss-Lobatto
point distribution is applied. The polynomial approximations space isl @& the

approximation reconstruction. Tlg, andL, errors are presented in Table 5.1.
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Table 5.1. Thd.,, andL, errors and orders of accuracy with BR1 method

Degree of Freedom dx L., Error L., order L, errors L, order

4 0.04 4.7334e-02 7.9359e-04

0.02 7.3279e-03 2.69 9.1589e-05 3.12

0.01 6.7790e-04 3.43 7.6026e-06 3.59

0.005 7.5080e-05 3.17 7.9769e-07 3.25

0.0025 8.4658e-06 3.15 7.4540e-08 3.42

These results did not match the expected the order of accurd®@s been verified
numerically in [79, 113], that this formulation leads to numericalgblst but incorrect
solutions. From the table 5.1, we can see that the numerical soliggEmst@ converge with
mesh refinements but lost more half order of accuracy, esdlydor L., errors. If one does a
mesh refinement study without knowing the exact solution, one could conbkideethod is
convergent. If the method is used to solve the complicated NawkesSéquation, one could

not be able to tell the result is wrong. This kind of results is very dangerous.

5.1.2.2 LDG Formulation

For the diffusion terms, the central fluxes (average values bptwee two interface
states) is applied in the last section, but it turns out inconsmsddutions. In order to remedy
the first formulation, the LDG method is applied as the second fotiol discretize the
diffusion terms.

e The numerical flux functiom is defined as the left values of the interface statestand t

right value between the two interface states, i.e., as
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com

ufo™ = u;_ and R{°™ =R;, (5.13)
We also can alternately take the left and right limitstiier flux inu andR. In other words,
u;, andR;_ are taken as the fluxes.
In Table 5.2, for illustration purpose that thg andL, errors are numerically observed
orders of accuracy until convergence. Note that the LDG approaapable of achieving

the optimum(k + 1)th order of accuracy in this case. For the following analyBes DG

method is applied.

Table 5.2. Thd., andL, errors and orders of accuracy with LDG method

Degree of Freedom dx Lo, Error L, order L, errors L, order

4 0.04 2.3207e-02 3.4881e-04
0.02 4.0084e-03 2.53 3.4244e-05 3.35
0.01 2.3361e-04 4.10 1.8618e-06 4.20
0.005 1.8334e-05 3.67 1.1231e-07 4.05

0.0025 1.1745e-06 3.96 7.0211e-08 4.00

5.1.3 Grid Resolution Study

The 2" order finite volume method is applied to compare with various oafe@PR
schemes. Both node center and cell center finite volume scheenesraidered. The face
flux term is replaced with a common Riemann flux

Fi+Fy 1,
Fiy1/2 = % -5 |ti12| (Uisr — wi) (5.16)
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where #;,1/, = (u; + u;441)/2 and F = u?/2. Monotone upstream-centered schemes for

conservations laws (MUSCL) approach is applied for the varialilapotation approach.

The second-order upwind MUSCL approach is given as follows

l — . ro .
U2 = Ui + 2 * (Uip1 — W); U 1= Uiy — 2 * (Uipz — Uig1);

2 ) (5.17)
u%—1/z =Uig t 2 (W —uj—1); uir_l =u oot (Ujp1 — uy);
2

Table 5.3. Thd., andL, errors for %9 order node center finite volume method

dx Lo, Error L., order L, errors L, order
0.01 2.8426e-02 1.0660e-03
0.005 9.16 04e-03 1.63 3.1111e-04 1.78
0.0025 2.4849e-03 1.88 8.3827e-05 1.89
0.00125 6.4535e-04 1.95 2.1674e-05 1.95

Table 5.4. Thd., andL, errors for 39 order cell center finite volume method

dx L, Error L., order L, errors L, order
0.01 2.8565e-02 1.0205e-03
0.005 9.0022e-03 1.67 3.0877e-04 1.72
0.0025 2.4928e-03 1.85 8.3674e-05 1.88
0.00125 6.4517e-04 1.95 2.1654e-05 1.95

wherel andr represent left and right values between the control volume interfaces.
In Table 5.3 and 5.4, thie, andL, errors for 2° order node center and cell center finite

volume method are presented. Both FV methods achieve the expected order of accuracy.
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5.1.3.1 Skin Friction Comparison based on Certairid Sizes

As we mentioned previously, the skin friction is used as the indichtccuracy for the
resolution of a boundary layer. The procedures how to get the skiorfrate given as

follows, which have been mentioned in section 5.1.1.

. . . Aysur
The dimensionless wall distange = 1, y* === =1 = Ay = ulT andu, = \/1,/p =

4

v

Ay = — and sefu = 0.01, p = 1.0. Analytical result is obtained from the exact solution
u(x,t) = —tanh (=). The wall shear stress is given as follows
2u
ou
ir,| = 1 |— = 10.01 % (=50)| = 0.5 (5.18)
dx x=0

So the skin friction is given as

Tw

Cr=1 =1.0 (5.19)
2 (o]
The friction velocityu, is given as
ield
B w = Jt,/p = V05 = 0.7071 (5.20)

Ay corresponding tg* = 1 is given as

y*xv  1.0x0.01
u,  0.7071

Ay = = 0.01414 (5.21)

There are(k + 1) degrees of freedom within one element f¢k + 1)th order CPR
formulation. To make a fair comparison between skin frictions ofitlite volume schemes
and those of the CPR formulation, thye should be scaled with a fact@r + 1), to take into

account the higher number of degrees of freedom used by the CPR formulation.
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Table 5.5 Skin frictions comparison

with Ay = 0.01414 (y* = 1)

FV 1 FV 2 2%order 3%order 4™order 5" order 6" order
CPR CPR CPR CPR CPR

Ay 0.01414 0.01414 0.01414*2 0.01414*3 0.01414*4 0.01414*5 0.01414*6

SF 0.9034 0.9784 0.9712 0.9996 1.0000 1.0000 1.0000

In table 5.5Ay = 0.01414 is set as the grid size to calculate skin frictions. SF represents
skin friction, and FV1 and FV2 represert Drder node and cell center finite volume

methods, respectively. It is obvious that the higher order CPR schemes ach&veebelts.

5.1.3.2 y* Comparison based on Certain Skin Friction

In Table 5.6 and 5.7Ay are compared for different order CPR schemes with a icertai
skin friction. In Table 5.6, the skin friction is equal to 0.9034 fSro2der node center FV
method, whery* = 1. For the same skin frictiory* is equal to 39.6322 for"6order CPR
schemes. In Table 5.7, the skin friction is equal to 0.9784 Tboler cell center FV
method, wheny* = 1. For this skin friction,y* is equal to 23.6351 for"6order CPR
schemes. This means that when a certain skin friction is reqaitayer grid size is needed
for high order CPR schemes. All of calculation is based on polynastgahstruction and
uniform point distribution within each element for CPR method.

For this 1D convection-diffusion problem the boundary layef s 0.054 when u =
0.99 from the exact solutioii5.4). The boundary layef = 0.054 is set as the grid size to

compute the skin friction for both"® finite volume method and various order CPR
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formulation. In Table 5.8, the skin frictions are presented. It isooisvihat the higher order

the CPR formulation is and the larger skin friction is.

Table 5.6y* comparison with a fixed skin friction SF = 0.9034

FV 1 FV 2 2%order 3%order 4™order 5™ order 6 order
CPR CPR CPR CPR CPR

Ay 0.01414 0.02960 0.02916*2 0.04706*8.0646*4 0.08228*5 0.0934*6

y* 1.0000 2.0934 4.1244 9.9844 18.2744  29.0948  39.6322

Table 5.7y* comparison with a fixed skin friction SF = 0.9784

FV 1 FV 2 2%order 3%order 4"order 5™order 6" order
CPR CPR CPR CPR CPR

Ay  0.00528 0.01414 0.01300*2 0.02386*8.03460*4 0.04515*5 0.05570*6

y* 0.3734 1.0000 1.8388 5.0622 9.7880 15.9653 23.6351

Table 5.8 Skin friction comparison

with the boundary laye¥ = 0.054 when u = 0.99

FV 1 FV 2 2%order 3“order 4™ order 5Morder 6" order

CPR CPR CPR CPR CPR
Ay 0.054 0.054 0.054*2 0.054*3  0.054*4  0.054*5  0.054*6
SF 0.1623  0.2828 0.2830 0.3766 0.4361 0.4694 0.4860

5.1.3.3 Solution Points Distribution Study

The point distribution influence within an element is studied in #dsi@n. In Table 5.9,
the uniform and Gauss-Lobatto point distribution are presented with cempao the ¥

order FV methods. The uniform point and Gauss-Lobatto point distributioes/ah the
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standard local coordinates aré:[—1,—1/3,1/3,1] and ¢: [—1, —/5/5,/5/5, 1],
respectively. In Table 5.9, Gauss-Lobatto point distribution shows er ietult than the
uniform point distribution.

Table 5.9.,y* comparison with the fixed skin friction SF = 0.9784

for different point distribution 4 order CPR

FV 1 FV 2 Lobatto points uniform points
Ay 0.00528 0.01414 0.03460*4 0.03380*4
y* 0.3734 1.0000 9.7880 9.5615

Table 5.10y* comparison with the fixed skin friction SF = 0.9784

for 4" order CPR with different point distribution

FV 2 di d2 d3 d4 d5
Ay 0.01414  0.03380*4 0.03415*4 0.03460*4 0.03480*4 0.03505*4
y* 1.00 9.56 9.68 9.79 9.84 9.92

Table 5.11y* comparison with the fixed skin friction SF = 0.9784

for 4" order CPR with different point distribution

FVv 2 dé d7 ds8 do d10
Ay 0.01414  0.03505*4 0.03630*4 0.03820*4 0.03960*4 0.04138*4
y*t 1.00 9.92 10.28 10.80 11.20 11.71

Table 5.10 and 5.11 show*' comparison based on different point distribution

&:[-1,—d,d, 1]. d is changed from small to large, in other words, from uniform values t
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the values closed to element interface. In table 5.10, d1 = 0.3333).8263, d3 = 0.4472,
d4 = 0.4736 and d5 = 0.5000. In table 5.11, d6 = 0.5000, d7 = 0.6000, d8 = 0.7000, d9 =
0.7500, and d10 = 0.8000. It is obvious that whendtlag@proaches to the boundary of the
element, the requiregt beomes larger.

Convergent histories are presented in Fig 5.2 for different poimibditbn based on grid
size Ay = 0.01414 = 4, which corresponds tp* = 1 for each degree of freedom fol" 4
order CPR formulation. When the point distribution is approaching to ¢meeak interface,

the convergence is slow as a compromise for the more accurate results.

0 T T 0
==+ -10, -0.3333, 0.3333, 1.
-5 -1.0, -0.3906, 0.3906, 1.0 | 5 ig '8’2' g: 18 1
- -10, 04472, 0.4472, 1.0 _ | -10,-06,06,1.
R R N -10, 04736, 0.4736, 1.0 | S0 NIN. | -10,-07,0.7,10 4
b= —-1.0, -0.5000, 0.5000, 1.0 b= RO -10,-08,08, 1.0
o .15 ] @ .15 \ 0,-09,09,1.0 1
) ) .
x 3 \,
2 20t S -20¢ .
o 2 \
-25¢ > -25¢
"N.
~
-30 L L L L I L -30 L I
0 2000 4000 6000 8000 10000 12000 0 05 1 15 2 25
# of iteration # of iteration

Figure 5.2. Comparison of convergence history for different point distributionsyits 1

for each DOF

5.2 2D Convection and Diffusion Equation

5.2.1 Introduction to 2D Convection and Diffusion Equation

In this section, extensive accuracy studies were carried ouRDorconvection and

diffusion equation. Following a similar procedure for 1D viscous burggrsation, 2D
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viscous burgers equation are designed to test the resolution forewkfferder CPR
formulation with exact solutions.

We use the similar manufactured solution of Sun [78]. The convectifusidn equation

has its inviscid and viscid fluxes defined as= Eu andF, = u - Vu, respectively, wherﬁ

is the advection angd is isotropic, its notation is replaced by a scalaiThe convection
velocity is set as uniform and horizontal with a unit magnitudehi@ilinear viscous burgers
equation and a diffusivity ofu = 1078 is employed. The computational domain is
rectangular box 0f0.05,1.05] x [0,0.001] to avoid the leading edge singularity problem.

This 2D convection-diffusion equation is defined as

-3
x 10
1

0.8

0.6

04 10.4

0.2

0.2 0.4 0.6 0.8 1

Figure 5.3 Exact solution of given in(5.23)
Up + Uy — u(uxx + uyy) =0 (5.22)

A source term is added such that the exact solution to this problem has a form of

-y
U=1-eVax (5.23)
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with ¢ = 0.59. This solution is shown in Fig 5.3 and represents a thin boundary layer
growing with+/x along the bottom wall. It has a thicknesssgf, = 8 * 107> at the inflow
and 3.6 x 10~* at the outflow. Note that the leading edge of the boundary |ayefi

included in the computation domain.

5.2.2 Method of Manufacture Solutions (MMS)

In order to assess the accuracy of the discretization methods of the prewgtmrs sgact
solutions are required. To address this problem, Roache [75] proposed thed Mdét
Manufactured Solutions, which provides a general procedure for geneaatiagalytical
solution for code accuracy verification. The method is straightiorwand leaded to
complete and final code verification. The basic idea of the proceslucemanufacture an
exact solution without being concerned about its physical realismormdinuum solution
independent of the code or of the hosted equations is picked up and be uséy todes.
A non-trivial analytical solution which exercises all orderedvdives is used. In MMS,
instead of solving equatiof5.22) directly, we solve the equation augmented with an
analytical source term,

Up + Uy — U(Upy + uyy) =H(x,y) (5.24)
Once an arbitrary manufactured solution is selected, the sauneast found by substituting
the exact solution into the original continuous differential equation atiohg the source
term to the remainder. The source term is not a functian bit is only a function of the

independent variables and parameters of the PDE. The chosen exact §blR8pins used.
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We determine the source terB(x,y) which, when added the Burgers equation for
u(x,y), produces the exact solution. We write the Burgers equation as atoogknear) of
u,
L(w) = up + uy — p(upy + uyy) (5.25)
We evaluate tha that produce the exact solution by operating on the exact solution wi
L(u). Substitute the exact solution into equat{6r87) to get the source terbi(x, y).
H(x,y) = L(U) = Uy + Uy — p(Uyy + Uyy) (5.26)

Matlab symbolic calculation is applied here to Hék, y) as following

H(x,y) = 4x? + y? — 2c3u2x:y — 3CH Xy 5 (5.27)
(cux)z (cyx)% * <4cx3e(0#—x)%
Then we now solve the modified equation
L(uw) = up +u, — u(uxx + uyy) =H(x,y) (5.28)
Or
Uy = —uy + pugy + uyy) + H(x,y) (5.29)

with compatible initial and boundary conditions, the exact solutionb&ill (x, y) given by

(5.35).

5.2.3 Grid Resolution Study

The computational domain is divided into rectangular elen#ttsby linesx = x,, and
Y = Y, 1€, E™ =[x, Xns1] X [V Ym+1]- The basis in this section is formed by a tensor

product of one-dimensional polynomial basis. In table 5.12, Ithend L, errors are
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presented. Note that the approach is capable of achieving the optithordet of accuracy

with degree3 polynomial reconstruction.

Table 5.12 Thé., andL, errors and order of accuracy fdt drder CPR

Grid size L, Error Order L, Error Order
20x10 2.354e-01 1.134e-03
40x20 4.239e-02 2.47 1.207e-04 3.23
80x40 5.478e-03 2.95 1.018e-05 3.56
160x80 4.826e-04 3.50 7.455e-07 3.77
320x160 3.188e-05 3.92 4.692e-08 3.99
1 x10™
—8— Exact
10] [5x5] 1
5 | [5x10]
g 8 ——[5x20] |
i
£ 6;
£ 6
n
4,
2

Figure 5.4. Skin frictions comparison with different gridg/tdirection for & order CPR
In Fig 5.4, numerical skin frictions are presented for three diftegrids[5 x 5], [5 X

10], and [5 x 20] compared withthe skin frictions from the exact solution witff' 4rder
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CPR formulation. We kept the same grids inatkgirection, and use different grids in the
direction. It is obvious that the finer grids gave better numerical results.

In Fig 5.5, numerical skin frictions are presented for three diffegads[5 x 5], [10 x
5], and [20 x 5] compared withthe skin frictions from the exact solution witl drder CPR
formulation. We kept the same grids in trairection, and use different grids in the
direction. It is obvious that there is no big difference for different grid size.

In Fig 5.6, numerical skin frictions are presented f8f, 2" and &' order CPR
formulation for grids[5 x 5] compared with the skin frictions from the exact solution. Of
course the higher order formulations give better numerical results.

The numerical skin frictions of various order CPR formulation aneieti for more

details. If we set = 1.05, the exact solution is

-y
u=1—e V#1105 (5.43)

The wall shear stress is given as follows

= [1.0e — 08 * 1.7554e + 04| = 1.2705e — 04  (5.44)

x=0

. |6u
TW _H ax

So the skin friction is given as

T
Cr=1 = = 2.5410e — 04 (5.45)
5pUS

The exact solution has a thicknes®g§, = 3.6e — 04 atx = 1.05. If we set

50 99 yields 50 99
S99 _ , Ay = 2% _ 9.0e — 05 5.46
Ay — Ay=—; e (5.46)
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thenAy = 9.0e — 05 is set as a grid size to calculate skin frictions for ckffié orders of
CPR formulation atr = 1.05. In this case, there are 4 cells inside the boundary lafer. 5

order CPR formulation’s result is very close to the exact result.

x 10

12

— Exact

10t —4— [5x5]
—o—[10x5]
—e—[20x5]

Skin Friction

0.2 0.4 0.6 0.8 1
X

Figure 5.5. Skin frictions comparison with different gridscidirection for 4" order CPR

-3
19 x 10 |
— Exact |
' —4—2nd order CPR
_5 08! ~—#&— 4th order CPR
© —e— 6th order CPR
i 0.6}
[
= 047
wn
0.2
O |
0.2 04 0.6 0.8 1
X

Fig 5.6. Skin friction comparison with different order CPR formulation for (giig 5]

If we set 2 cells inside the boundary layer
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60 99 yields 60 99
—=2 Ay = ——=1.8e — 04 5.47
Ay — dy=— e (5:47)

Ay = 1.8e — 04 is set as a grid size to calculate the Skin frictions fieréint orders of CPR

formulation atr = 1.05 in table 5.14. 8 order CPR formulation provides a result close to

the exact solution.

Table 5.13 Skin frictions comparison

with Ay = 9.0e — 05

2" order 3% order 4™ order 5™ order 6™ order
CPR CPR CPR CPR CPR
Ay 9.0e-05 9.0e-05 9.0e-05 9.0e-05 9.0e-05
SF 1.7962e-04 2.4734e-04 2.5371e-04 2.5410e-04 2.5411e-04
Error(%) 29.31% 2.66% 0.15% 0% 0%
Table 5.14 Skin frictions comparison
with Ay = 1.8e — 04
2" order 3% order 4" order 5" order 6™ order
CPR CPR CPR CPR CPR
Ay 1.8e-04 1.8e-04 1.8e-04 1.8e-04 1.8e-04
SF 1.1534e-04 2.1569e-04 2.4792e-04 2.5418e-04 2.5411e-04
Error(%) 54.60% 15.12% 2.43% 0.03% 0.0004%
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CHAPTER 6. CONCLUSION AND FUTURE WORK

The CPR (Correction Procedure via Reconstruction) method with ahdibcontinuous
space is studied. The hybrid space includes polynomial and Fouses.b&lthough the
piecewise polynomial bases are general used as local spanestidiscontinuous methods,
they may not always provide the best approximation to the soluttnsome specific
problems. For the boundary layer problems, exponential functions actbeved results
than the classic polynomial functions due to the large slope of the solution near theypounda
For the highly oscillatory problems, the trigonometric functions provetter approximation
because of high wave numbers. In our proposed method, hybrid bases asd. afimdi
polynomial bases are used in order to keep a certain order of @coomathe other hand the
Fourier bases are applied with the objective of resolving broad-wave propagation. Due
to Fourier spaces, the exact dispersion relaienK is exactly satisfied at a certakh Free-
parameters are optimized to minimize both dispersion and dissigatims. This method is
named as frequency optimized CPR formulation (FOCPR).

In the one-dimensional analysis, free-parameters in the Fdwagas are optimized to
minimize both dispersion and dissipation errors by mimicking tindasi idea of dispersion-
relation-preservation (DRP) to maximize the resolvable wawaber given a certain error
threshold. The hybrid bases with optimized free-parameters showvgmael propagation
properties. A comparison was made with the dispersion and dissigatperties of the
central and upwind DRP schemes in 1D. The four-point stencil optimigeddhbases of

CPR formulation is able to resolve waves with non-dimensional wawders as high as the
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seven-point stencil central and upwind schemes. The more Fouses bamponents are
used, the less dispersion and dissipation errors the schemes show.

Mesh resolution analysis is applied to verify the optimizatiorhefhybrid bases. The
number of grid points per wavelength (PPW) is presented with thetiwbjef accurately
simulating wave propagation over larger distance. The PPW saalyatches the
optimization perfectly, and both methods can be used to verify each btbhee Fourier
terms are there, the fewer PPW are required. Because th@zagtischemes are optimized
for a given range of wave number, they required fewer PPW if thgagation distance is
relative short. As the number of wavelength traveled increasagdtramtage of the optimized
schemes diminished as the required PPW increase. Howevereif RV is required, the
use of optimized scheme not only gives most accurate resultssbuteglults in significant
saving of CPU time.

In the two-dimensional analysis, the tensor product bases aredafiplithe quadrilateral
grids. The accuracy of the hybrid bases depends on different non-cinamngave numbers.
Both the dispersion and dissipation errors are largest in theiolirexdtd = 0 or 6 = /2.
The dispersion relation in the directién= 0 or 6 = /2 is the same as the corresponding
one-dimensional analysis.

Several numerical tests are given to verify the wave projpaganalysis. The designed
spaces for CPR formulation exactly simulate the one-dimensianad wquation with a sine
wave as the initial condition at some specific non-dimensional wave number. The method ha
been tested for Problem 1 in Category 1 (C1P1) on benchmark problem Fouhth
Computational Aeroacoustics (CAA) Workshop. It is shown that the sshath optimized

Fourier bases can resolve waves more accurately than the polybasea at 3.7 PPW. An
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artificial “broadband” wave composes short, medium and long wavesers as an initial
condition for the wave equation. The numerical results agree witRPRWE analysis. The
hybrid base performs better than the corresponding polynomial basasénconditions. 2D
acoustic wave problem is tested. It is verified again that tvardage of the optimized
hybrid bases depend on the non-dimensional wave numbers.

Extensive resolution studies were carried out for both 1D and 2D vidwangers
equations with the designed exact solutions to investigate theriiions for various order
CPR formulation. For CPR method, two different formulations for the diffusion equat®ns a
studied. The first formulation is BR1 [9] formulation, the othemfuolation is the local
Galerkin method (LDG) [21]. BR1 formulation did not match the expedtedotder of
accuracy, while the LDG achievég + 1)th order of accuracy with a degrpgepolynomial
reconstruction.

For 1D viscous burger equation, the skin frictions are studied as thieti@s study
criteria. For node centef@order finite volume method, the skin friction is equal to 0.9034
wheny* = 1. For the & order CPR formulatiory™ is equal to 39.6322, if the same skin
friction is required. For cell centef®rder finite volume method when skin friction is equal
to 0.9784,y* = 1. For the & order CPR formulation when skin friction is equal to 0.9784,
y* can reach 23.6351. All of calculation is based on polynomial reconstruciibnréform
point distribution within each element of CPR formulation. Diffeérpoint distribution for
CPR formulation is studied. When the points approach to the interfazachbfelement, the
better resolution results are obtained. Convergence histories shotheéhabnvergence is
becoming slow when the points are close to the element intexfaaecompromise for the

more accurate numerical results.
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2D viscous burgers equation with an exact solution is designedt tineéesesolution for
various order of CPR formulation. Method of manufactured solutions (MM&)ides a
general exact solution for accuracy verification. In MMS, iadtef solving original equation
directly, the equation with an analytical source term is solvedtlts 2D equation, tensor
products of one-dimensional polynomial and rectangular meshes aiedapigie errors
study shows that the approach is capable of achievin@thel)th order of accuracy with a
degreek polynomial reconstruction.

Numerical skin frictions are presented with various grids compaitdthe skin frictions
from the exact solution. The finer grids gave better numeresallts. And numerical skin
frictions are presented for various order CPR formulation compardthe exact skin
frictions. For our 2D benchmark problem, the error friction can achiewat#.15% for #
order CPR, when cells put inside the boundary layer at 1.05 and the skin friction is
equal to the exact solution wheli 6rder of CPR formulation is applied, if there are 4 cells
inside the boundary layer. If 2 cells inside the boundary layer=atl.05, the error of skin

friction for 5" order of CPR formulation is 0.03%.

www.manaraa.com



79

APPENDIX A. DISCONTINUOUS GALERKIN METHOD

The discontinuous Galerkin (DG) method is briefly reviewed in theeptesppendix.
Hartmann [39] gave a nice overview of DG method, with studies atatbility for different
governing convection-diffusion equations and superconvergence properties rfan ce

functional of the DG solution.

A.1 Framework of DG Method

A short summary of the DG methodology is given as follows. Thpelplic
conservation law is considered.

2Q R
— tVFQVQ =0 (A1)

where F(Q,VQ) is a flux vector. The domain is partitioned into non-overlapping sub-
domainsV;,i = 1,..,N. On each of these cells, a set of basis fundtigp;j = 1,--,N, is
introduced. Mostly these function are polynomials with a certainmaxi degreée, which
results in a scheme with order of accur&cy 1. Other functions like e.g., trigonometric and
exponential functions can be used as a set of basis functions toaitidrsolf the form is

given as
N
Q; = Z QWi ; (A.2)
j=1

Q;; are the DG solution variables. Applying the weighted residual torelement/;, we

obtain

j W(a—Q+V-ﬁ(Q,VQ))dV=O (A.3)
v, at
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Using divergence theorem, (A.3) is

ij WQdv + Wﬁ(Q,VQ)-ﬁdS—f VW - E(Q,VQ)dV = 0 (A.4)
dt ),

av; Vi
where dV; is the cell boundary interface amddenotes the unit outward normal vector.
Since the normal flux is discontinuous across the interface ofgomnts domains, a
common numerical flux (the Riemann flux in the case of inviscid flew)sed to replace
the normal flux based on the solutions and gradients on both el@nam its neighbor.
F(Q,VQ) -7 = F(Q:,VQi, Qis, VQis, ) (A.5)
where Q; and VQ; are the solutions and gradients Bn Q;, and VQ,, are from the
neighboring element. The inviscid flux is the Riemann flux dependn@;Q;, and the

unit normal to ensure a coupling between neighboring cells.

A.2 DG Basis Functions

The basis function®/; ; should be specified to fully define a DG scheme. The stability
and accuracy properties of the DG method only depend on the choite aolution
approximation space. Mostly, the space of polynomial with ddgaadess is chosen, which
leads to ak + 1)th order accuracy scheme for convection equations. Any set of cemplet
basis polynomials can be used as basis functions, without chahgietability and accuracy
properties of the DG schemes.

Non-polynomial functions can be introduced as basis functions in ordéetter
represent certain physical solutions. Yuan and Shu [109] used trigormamgtrexponential
functions in order to obtain better numerical results for spegiiiest of PDEs and initial and

boundary conditions.

A.3 Viscous Treatment for DG Method
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The discretization of diffusive terms with the DG method has lemussed by many
researches over the past decade. Different approaches welepddyeavhich include the
local DG approach by Cockburn and Shu [28], different approaches byaBasRebay [8-
10], interior penalty approaches proposed by Douglas and Dupont [33], tlmacpmf
Baumann and Oden [71] and the recovery methods by Van Leer 86JalThe interested
reader is referred to relative works for detailed descriptioralbfthese discretization

techniques for diffusive terms with the DG method.
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APPENDIX B. SPECTRAL VOLUME METHOD

The spectral volume (SV) method is briefly reviewed in this apgefiaders can refer

to [100] to get more details of SV method.

B.1 Framework of SV Method

The SV method uses averages over control volumes (CVs) as solut@inieslike the
FV method. In the SV method, each simplex eleméntalled a spectral volume, is
partitioned into sub-cell¥; ; called control volumes (CVs), as shown in Fig. A.1. We

consider the following conservation laws

anﬁ =0 B.1
EJF'(Q)_ (B.1)

Integrating (B.1) on a spectral volume (SX/)we obtain

f a—de+j£ F(Q)-7dS =0 (B.2)
Vi at aVi’j .

1 is the unit outward normal @V; ;. Define the CV averaged conservative variabled/for

as

0, = _f"irf o (B.3)
T vl '

where|V; ;| is the volume o¥; ;. The (1.20) becomes

dQ;;

V; +Z Fw)-RdS =0 B.4
- Vil — (B.4)

f represents the fac@; ; are the DOFs, which are used to construct a dégpsynomial

using the following equation
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m f—
Q@ =) Wiy, (B.5)
]:
m is the sub-cells number. The “shape function” like polynoni#ls(7) associated with

V; j should satisfy

f Wi, dV = (B.6)

l]| V

whered; ; is the Kronecker delta. If the solution is sufficiently smooth,ptbignomial is an

(k + 1)th order approximation of the solution. The reconstruction solutions are generally not

continuous on the interface between two SVs, so a Riemann fluxdstausake place the

normal flux in this inviscid case.

Qu oy, | +Zfeav f F(Q,Q,,/)dS = 0 (B.7)
ij

Since the solution is continuous inside the SV, the analytical dlaxe used for interior
faces. The surface integral is computed ugikg- 1)th order Gauss quadrature formula,
which is exact for degrek or less polynomials. If the governing equations are linear, the
surface integral can be computed exactly because the flux visctalso a degreé

polynomial.

[ NN A

(@) (b) ()

Figure B.1 Control volumes for (a) linear; (b) quadrature; (c) cubic SVriaragte
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B.2 SV Basis Functions

Mostly, the space of polynomial with degrée or less is chosen like Lagrangian
polynomials, with respect to CV-averaged values instead of pointaises. This means
that in general, the SV basis polynomials depend on the localeggoof the corresponding

cell. Non-polynomial functions can also be introduced as basis functions like b@dne

B.3 Viscous Treatment for SV Method

Different treatments for the diffusive terms with the SV modtare known in literature
[79]. Most of them are derived from similar approaches that ekeloped for the DG
method can be found in Arnold et al. [3]. The most popular three appsahthe local SV
(LSV) approach based on the local DG (LDG) approach proposed by Cockbu®hand
[28], the second approach of Bassi and Rebay (BR2) proposed by Baslandet al. [8]

for DG, and the interior penalty (IP) method, see Douglas and Dupont [33].
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APPENDIX C. SPECTRAL DIFFERENCE METHOD

An alternative to the SV method, which was discussed in the previpendix, the
spectral difference (SD) method is briefly reviewed in thiseappx. Readers can refer to

[63] to get more details of the SD method.

C.1 Framework of SD Method

In a SD method, two sets of grid points, i.e., the solution points and flumtspaie
defined in each element. The solution points are the locations wieermdal values of the
conservative variable@ are specified (usually Gauss quadrature points). Flux pointbeare t
locations where the nodal values of the fluxes are computed. The iD@f#sSD method are
conservative variables at the solutions points. Fig C.1 displays ttenpats of the solution
and flux points for the first to third order SD schemes.

Let the position vector of thgh solution point at cell be denoted by, ;, and thekth
flux point at celli be denote by, ;. DenoteQ; ; the solution af; ;. Given the soltuions aj ;,
an piecewise degrédepolynomial can be constructed using Lagrange-type polynomial basis,

ie.,
m
=) L0, CEY
]:
whereL; ;() are the cardinal basis functions. With (C.1), the solutiogsatfthe flux points
7; ; can be computed easily. Since the solutions are discontinuous elerassit boundaries,

the fluxes at the element interface are not uniquely defined. nbnmal flux can be

computed with approximate Riemann soN&Q;, Q;,,7). Consider the face flux point
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shown in Fig C.211,is denoted the outgoing normal from ciéllto cell 1. For this interface

point, Q; is computed fron¥; andQ; .. is computed from cell 1.

(a) (b) (©)
Figure C.1. Solution (solid circles) and flux points (solid squdi@sfa) = order (b) 2°

order (c) 3 order SD in a triangle

Figure C.2. lllustration of flux computation for face and corner points
Since the tangential component of the flux does not affect the cotisergeoperty, we
have the complete freedom in determining it at the face point. There are two ¢ptiafiise

on the interface. One is to use the average two tangential compdmentboth sides of the
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interface, the other is to use its own tangential comporiers.the unit vector in the
tangential direction.

For a corner flux point in cell;, two faces (from cell;) share the corner point, as shown
in Fig 1.4. Let the unit normal of the two facesrgeand7i,. The normal components of flux
F, andF, in #i; andi, directions and computed with a 1D Riemann solver in the normal
directions. It is important to emphasize here that fluxes latcomer points do not have
unique values for all the cells sharing the corner. In spite d@f lbeal conservation is
guaranteed because neighboring cells do share a common normal flluthatflax points.
Once the fluxes at all the flux points are recomputed, they atttaform a degre€c + 1)

polynomial, i.e.,

S Mpt1 2
E@® =) " 2u@F, (€2

=1
where Z; ,(#) are the set of cardinal basis functions defined7Qyand F},l = F(#).

Obviously, the divergence of the flux at any point within the cell can be computed using

S Mpt1 . 5
V-E@ =) vz, Fy (€3)

To update the solutions at the solution poififs we need to evaluate the divergence of these

points, which can be easily computed according to

5 Mp+1 . 5
V- Fi(ri,j) = Zl_l VZi,l(ri,j) . Fi,l (C4)
Finally the semi-discrete scheme to update the solution unknowns can be written as
do; ; Mi+1 -
g;l + Z VZi,l(Fi,j) . Fi,l S 0 (C 5)
=1
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The SD method for quadrilateral or hexahedral grid is sirntoléne staggered grid multi-
domain spectral method [58]. It is particularly attractive beeaall the spatial operators are
1D in nature. In 2D, the solution and flux points are usually the Gaubs$auss-Lobatto
points. An obvious advantage of the SD method is that the formulation §G€s) not

involve any integrals. As a consequence, costly Gauss quadrature rules are. avoide

C.2 SD Basis Functions

In general, the space of polynomial is chosen like Lagrargpdmomials similar to DG
and SV method. At the solution and flux points, the polynomial value should betedgua
solution and flux variables, respectively. The SD basis polynoraralshus Lagrangiak
order polynomials with respect to the solution points. The flux hadigromials are also
Lagrangian polynomial witkk + 1 degree. Notice that, unlike the SV basis polynomials, the

SD solution and flux basis polynomials are always independent of the coordinate.syst

C.3 Viscous Treatment for SD Method

Like with the SV method, the treatment of the diffusive ternth whe SD method is
derived from approaches that were developed for the DG methodaiSamproaches for SV
method are applied in SD method, which include the local SD (LSD) agproa
corresponding to the LDG scheme for DG [28], the approach of BadsRebay (BR2) [8],

and the interior penalty (IP) approach [33].
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APPENDIX D. MATRIX DEFINITIONS

In this appendix, we give the matrix that appear in Eqgs (3.9) and (4.4) of section 3 and 4.
For the one-dimensional equation (3.1), the upwind Riemann flux formulatien1) is
used. Let the weight function §&;(¢)|l = 1,2,---,p + 1}, wherep+1 is the DOFs in each

element, and is the local coordinaté € [—1, 1]. The matrices in Eq. (3.9) are formed as
Npi = =2%G 1« Wy (CDW;(1), (mj=1,..,p+1) (D.1)

NO, =2 *awé—if’") 425Gk W (—DW(-1), (mj=1.,p+1) (D.2)

G~! is the inversion matrix of, andG,, ; = f_ll W (O W;(Odé (m,j=1,-,p+1).
For the two-dimensional equation (4.1), the upwind Riemann flux forronleg also

used. The matrices in Eq. (4.4) are given as follows

L, |0 if £1(555) # 1 (%)
—2xG 7« WfZ(i,p+1)(_1)Wf2(j,p+1)(1): if f1 l;+11 =f1 L_Tll
14 p
Nl'(_)f =
0 if £1(5) # 1 (%) .0
Ax ow(Era ~ _ g 3 .
224 % 22) 3G Wratip+1) (= DWra(prn (=1, if f1 (zlnTll) =1 (;_:1)
0 if £2(22) % F2 (2
Mi;l — ay (P"’l) (P"’l) (DS)

~25 G Wyipany (D Wragpen D, if £2(52) = £2(55
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0 _

0 i 12() # 12 ()

oW (§r1(ip+)) _ ' o -
2 * J 1;1%-( p+1)) 2% G« Wfl(i,p+1)(_1)Wf1(j,p+1)(_1)r lf fZ (p_-l-ll) = fz (p_+11)

a, (D.6)

wheref1 denotes the rounded function, suctfamr(i — 1,p + 1) in Matlab f2 is given as

mod(i,p + 1), if mod(i,p+1)#0

f2lep +1) ={p+1, if mod(i,p+1) =0 (4.7)

Where mod is defined as complementation function, suatodsn Matlab.
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