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ABSTRACT 

A new discontinuous formulation named Correction Procedure via Reconstruction (CPR) 

was developed by Huynh [49] in 1D, and extended to simplex and hybrid meshes by Wang & 

Gao [107] for conservation laws. As with all discontinuous methods such as the 

discontinuous Galerkin (DG), spectral volume (SV) and spectral difference (SD) methods, 

CPR method employs a piecewise discontinuous space. All of them can be unified under the 

CPR framework, which is relatively simple to implement especially for high-order elements. 

In this thesis, we deal with two issues: the efficient computation of broadband waves, and the 

proper resolution of a viscous boundary layer with the high-order CPR method. 

A hybrid discontinuous space including polynomial and Fourier bases is employed in the 

CPR formulation in order to compute broad-band waves. The polynomial bases are used to 

achieve a certain order of accuracy, while the Fourier bases are able to exactly resolve waves 

at a certain frequency. Free-parameters introduced in the Fourier bases are optimized in order 

to minimize both dispersion and dissipation errors by mimicking the dispersion-relation-

preserving (DRP) method for a one-dimensional wave problem.  

For the one-dimensional wave problem, the dispersion and dissipation properties and the 

optimization procedure are investigated through a wave propagation analysis. The 

optimization procedure is verified with a wave propagation analysis. This optimization 

procedure is verified through a mesh resolution analysis, which gives the relation between 

the grid points-per-wavelength (PPW) and the wave propagation distance. Numerical tests 

have been performed to verify the wave propagation properties for the scalar advection 

equation. The two-dimensional wave behavior is investigated through a wave propagation 
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analysis too. The wave propagation properties are verified with a numerical test of the two-

dimensional acoustic wave equation.  

In order to understand the mesh size requirement to resolve a viscous boundary layer 

using high-order methods, extensive grid resolution studies are performed for both 1D and 

2D viscous burger’s equations with exact solutions. The skin friction is used as an indicator 

of accuracy for the resolution of a boundary layer. For the diffusion terms, the local 

discontinuous Galerkin (LDG) method is employed to achieve the �� N 1�=O order of 

accuracy with a degree � polynomial reconstruction. 

For the 1D viscous burger’s equation, different grid sizes are determined for various 

order CPR formulations given a certain error in the skin friction. And different skin frictions 

are obtained for a certain grid size. In addition, accuracy and convergence properties are 

studied for different distribution of solution points.  

A 2D viscous burger’s equation with an exact solution is designed to test the resolution 

for various orders of CPR formulations. The method of manufactured solution (MMS) is 

employed to provide an exact solution for code accuracy verification. In MMS, instead of 

solving the original equation directly, the equation with an analytical source term is solved. 

Accuracy studies are also carried out.  

Keywords: (Correction Procedure via Reconstruction), A Hybrid Discontinuous Space, 

Wave Propagation Analysis, Grid Resolution Study, Method of Manufactured Solution.
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CHAPTER 1.  INTRODUCTION 

1.1  Overview of High-Order Methods 

Computational fluid dynamics (CFD) has been made impressive progress over the past 

decades, due to advances in many fields including numerical solution techniques and 

computer science and engineering. CFD tools are becoming more and more useful as current 

computer hardware makes the simulation of complex fluid flow not only feasible, but also 

economical. Nowadays, nearly all commercial CFD solvers are based on second-order 

accurate numerical methods, either finite volume (FV) [1, 2, 7], finite difference (FD) [17, 

37, 77] or finite element [16, 40, 45-47, 66]. The Reynolds averaged Navier-Stokes (RANs) 

equations can be solved for “real world” configurations within a few hours on parallel 

computing system.   

Although these second-order solvers have proven very useful, they are insufficient to 

accurately predict many flow problems such as wave propagation problems, vortex-

dominated flows, as well as large eddy simulation and direction numerical simulation (DNS) 

of turbulence. Second-order algorithms are mostly too dissipative to resolve these problems 

accurately. High-order methods are more suited for such applications, since they have much 

better wave propagation properties.  

High-order accuracy can be achieved with FV method on structured grids, by extending 

the stencil that is used for the reconstruction of the solution variables at the cell faces. 

However, the generation of structured grids is difficult for complicated geometries. On the 

other hand, the generation of unstructured grids is much easier and can be automated. High-

order methods suited for unstructured grids are required. Such methods approximate the 
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solution by constructing a high-order polynomial of a certain degree on each cell. They are 

compact methods because only local data on each cell and data of its immediate neighbors is 

required for the evaluation of the fluxes, which makes such methods easily parallelizable. 

The discontinuous Galerkin (DG), spectral volume (SV) and spectral difference (SD) 

methods belong to the class of methods. An overview of DG, SV and SD methods is 

presented here. A new discontinuous formulation named the Correction Procedure via 

Reconstruction (CPR) was developed on hybrid meshes, which shows more efficient 

implementation especially for high-order elements.  

1.1.1  Discontinuous Galerkin (DG) Method 

The DG method as the most popular high-order method for unstructured girds is locally 

conservative, high-order accurate and can easily handle irregular meshes for complex 

geometries. It was introduced by Reed and Hill [74] in 1973 for solving a steady 

conservation law, namely the neutron transport equation. It was first used for unsteady 

advection laws by Van Leer [94] in 1978. Important contributions to the development of the 

DG method for hyperbolic conservation laws were made by Cockburn, Shu et al. [24-27], 

with the development of the Runge-Kutta DG (RKDG) methods. A comprehensive overview 

of these RKDG methods can be found in a review article by Cockburn and Shu [29]. Bassi 

and Rebay demonstrated the DG method for the compressible Euler and N-S equations in 

obtaining high-order accuracy [9, 10, 13]. 

The DG method has been extended to solve the diffusion equation and the diffusive terms 

of the N-S equations. These approaches include interior penalty (IP) approaches, see e.g. 

Douglas and Dupont [33], the approach by Baumann and Oden [14-15] and the local DG 
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approach by Cockburn and Shu [28], different approaches by Bassi et al. [11, 8] and the 

recovery methods by Van Leer et al. [95-97]. Readers who are interested in these approaches 

can refer to an overview by Arnold et al. [3], where their consistency, stability and order of 

accuracy are discussed. The order of accuracy of all these approaches for the diffusion 

equation is limited to � N 1, with the degree � polynomial. Van Leer et al. developed the 

recovery methods and the suboptimal based on a better understanding of the physical nature 

of the diffusion equation, which are capable of achieving higher orders of accuracy up to 

2� N 2. There recovery methods do not fit inside the unifying framework proposed by 

Arnold et al. [3]. 

Many other researchers made significant contributions to the DG method. A quadrature-

free DG formulation was developed by Atkins and Shu [5]. Hu et al. [43] performed an 

analysis of the wave propagation properties of the DG method. A simplified treatment of 

curved wall boundaries for the Euler equations with the DG method was proposed by 

Krivodonova and Berger [59]. Space-time implicit DG methods for hyperbolic conservation 

laws were presented by Lowrie et al. [68], Van der Vegt and Van der Ven [93], and Klaij et 

al. [55]. General overviews of the DG method can be found in lecture notes by Cockburn et 

al. [21] and by Hartmann [39].  

1.1.2  Spectral Volume (SV) and Spectral Difference (SD) Method   

The basic methodology of the SV method was first presented by Wang [100], along with 

its application to one-dimensional scalar hyperbolic conservation laws in 2002. The SV 

method was extended to two-dimensional scalar equations and different limiting strategies 

were studied to capture discontinuous solutions by Wang and Liu [101]. The SV method was 
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extended to one-dimensional systems of conservation laws, along with an optimization study 

of the SV partitions in [102]. The SV was applied to solve two-dimensional inviscid flow 

problems, governed by the 2D Euler equations, by Wang et al. [103]. The appropriate 

treatment of curved wall boundaries was addressed for 2D SV method by Wang and Liu 

[105], by using a high-order geometric mapping of the SV cells near wall boundaries. The 

extension to three-dimensional systems of conservation laws was then carried out by Liu et 

al. [64], who applied the SV method to 3D computational electromagnetics (CEM) problems. 

Sun et al. [80] developed and presented a formulation of the SV method for the N-S 

equations. Haga et al. solved 3D Euler and N-S equations with the SV method on Japan‘s 

Earth Simulator Computer. Kannan et al [53] investigated different formulations for the 

discretization of diffusive terms with the SV method. Comparison of the SV method with the 

DG method were made by Sun and Wang [82] and Zhang and Shu [114]. A quadrature-free 

formulation of the SV method in analogy with the quadrature-free formulation of the DG 

method was developed by Harris et al. [36], is more efficient than the standard formulation in 

terms of computational time.  

Chen [18-19] made a contribution towards the appropriate definition of high-order 

accurate SV partitions of simplex cells based on the Lebesgue constant criterion formulated 

by Wang and Liu [101]. Van Den Abeele et al. [86-88, 90, 92] performed Fourier analysis for 

1D, 2D and 3D SV partitions of the simplex cells to assess the accuracy and stability 

properties of the SV schemes. Harris and Wang [36] coupled this analysis to an optimization 

algorithm to identify optimal SV partitions.  

The first work on the method which is known as the SD method dates on 1996 and is due 

to Kopriva and Kolias [58] and Kopriva [57], who called the method ‘conservative 
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staggered-grid Chebyshev multidomain method’. Their formulation was for quadrilateral 

cells and they solved two-dimensional compressible flow problems based on the Euler 

equations. A general formulation of the method, including simplex cells, was given in 2006 

by Liu et al. [65], who first called it SD method, and applied it to two-dimensional scalar 

conservation laws and CEM problems. The SD method for simplex cells was then 

successfully extended to the 2D Euler equations by Wang et al. [104] and to the 2D N-S 

equations by May and Jameson [70] and Wang et al. [108]. An implementation of the SD 

method on hexahedral cells for the 3D N-S equations was reported by Sun et al. [83]. 

Different approaches for the discretization of the diffusive terms in the N-S equations with 

the SD method, were investigated by Van den Abeele et al. [91]. Huang et al. [44] reported 

an implicit space-time implementation of the SD method. Van den Abeele et al. proved that 

the SD method is independent of the positions of its solution points and found that 1D SV 

and SD methods are equivalent. Huynh [49] proposed a set of 1D SV and SD schemes based 

on Legendre-Gauss quadrature points and Jameson proved that these are stable for arbitrary 

orders of accuracy [70].  

1.1.3  Correction Procedure via Reconstruction (CPR) Method 

Recently, a new differential discontinuous formulation for conservation laws named the 

Correction Procedure via Reconstruction (CPR) is developed on hybrid meshes [107], which 

is inspired by several other discontinuous methods such as the DG, SG (staggered grid 

multi-domain), SV and SD methods. All of them can be unified under the CPR framework, 

which was relatively simple to implement especially for high-order elements.  
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The CPR formulation was developed in [107] under the name of flux reconstruction (FR) 

[49] and under the name of lifting collocation penalty (LCP). The LCP formulation is 

directly inspired by the FR method and can be viewed as an extension of the original FR 

method to simplex elements. Instead of directly reconstructing the flux function, a 

“correction field” due to interface flux jumps is computed in LCP. These two formulations 

have been renamed CPR, which is referred to FR and LCP.  

The degrees-of-freedom (DOFs) are the state variables named solution points (SPs) in the 

CPR formulation, where the differential form of the governing equation is solved. As a 

result, explicit surface and volume integrals are avoided. The CPR formulation is among the 

most efficient discontinuous methods in terms of the number of operations. The CPR 

framework is given in the next chapter.  

1.2  Objectives of the Present Work 

In this thesis, two issues are addressed for the CPR method. One is the efficient 

computation of broadband waves, another is the proper resolution of a viscous boundary 

layer with the high-order CPR method.  

1.2.1  Computation of Broad-band Wave  

The stability and accuracy of the CPR method depend on the choice of the solution 

approximation space and weighting functions. The basis function should be specified to 

define a CPR scheme. Mostly, the space of polynomial with degree � or less is chosen, which 

leads to a �� N 1�=O order accuracy scheme for convection equations. In the present study, 

hybrid bases including polynomial and Fourier bases are introduced as the local 
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approximation space in order to better resolve broadband wave propagation problems. 

Fourier bases are used such that the CPR scheme can exactly simulate a wave equation for 

certain wave numbers and resolve broadband wave numbers, and polynomial bases are kept 

with the objective of achieving a given order of accuracy. 

We borrow the ideas from the central and upwind dispersion-Relation-Preserving (DRP) 

schemes in determining the parameters of the Fourier bases to maximize the resolvable wave 

numbers given a certain error threshold [84, 85]. The basic idea of DRP scheme is to 

optimize the scheme coefficients for the high resolution of short waves with respect to the 

computational grid instead of the truncation errors. The optimization process has to allow the 

normalized H# norm of both dispersion and dissipation errors to be as close to zero as 

possible for a certain integration number range. This method is named a frequency optimized 

CPR formulation (FOCPR).   

The Fourier analysis is performed to assess the accuracy and stability properties of the 

CPR schemes with hybrid bases, by following the methods by Hu [43] and Van den Abeele 

[86]. Mesh resolution analysis is presented to study the dependence of points-per-wavelength 

(PPW) requirement on the number of wavelengths, by mimicking the procedures in [110]. 

Numerical tests are performed which show that the CPR schemes with optimized Fourier 

bases can resolve waves more accurately than the classic polynomial bases.  

1.2.2  Resolution of Viscous Boundary Layer   

The resolution of viscous boundary layers is studied in 1D and 2D for the high-order 

CPR method. The space of polynomial with degree � is applied as the weighting function, 

which should be �� N 1�=O order accuracy scheme for convection equations. 
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The different formulations play an important role for the diffusion equation simulation 

[79, 113]. Most of them are derived from similar approaches developed for the DG method, 

which can be found in Arnold et al. [3]. The most popular three approaches are applied in 

high-order CPR method, which are based on the Local DG (LDG) approach proposed by 

Cockburn and Shu [28],the first and second approaches of Bassi and Rebay (BR1 [9]) 

proposed by Bassi and Rebay. The order of accuracy study is performed for the different 

diffusion approaches to investigate their properties.  

For both 1D and 2D viscous burger’s equation, the skin frictions are studied as the 

resolution criteria. Numerical skin frictions are compared with the exact skin frictions for 

various orders of CPR schemes.  

For 2D viscous burger’s equation, the method of manufactured solution (MMS) provides 

a general exact solution for accuracy verification. In MMS, instead of solving the original 

equation directly, the equation with an analytical source term is solved. In the present study, 

only tensor products of one-dimensional polynomial are applied on rectangular meshes.  

1.3  Outline of the Thesis 

The outline of the remainder of this thesis is as follows. In chapter 2, the framework of 

the CPR method is given. In chapter 3, free-parameters introduced by Fourier bases are 

optimized by mimicking the procedure of DRP to minimize both dispersion and dissipation 

errors for the CPR schemes. An extensive study of the stability and accuracy properties of the 

CPR schemes with hybrid bases is presented. A mesh resolution analysis is performed to 

verify the optimization procedure. Several numerical testes are performed to verify the 

Fourier analysis. In chapter 4, the two-dimensional wave propagation analysis is studied 
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based on structured quadrilateral grids with tensor product bases. A two-dimensional acoustic 

wave is used to test the two-dimensional wave propagation analysis. In chapter 5, the 

resolution of viscous boundary layers is studied in 1D and 2D for the high-order CPR 

method. The skin frictions are studied as the resolution criteria for both 1D and 2D viscous 

burger’s equation. Conclusion remarks are given and future works are presented in chapter 6.  
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CHAPTER 2.  CORRECTION PROCEDURE VIA RECONSTRUCTION 

The differential discontinuous formulation for conservation laws named the Correction 

Procedure via Reconstruction (CPR) was developed to improve the efficiency or stability of 

several well-known high-order methods, including the DG method, staggered grid multi-

domain (SG), SV and SD methods. It unified all these methods into a simple nodal or 

collocation-type differential formulation. There is a one to one connection between different 

formulation and special polynomials in 1D or multiple dimensions with a tensor-product 

basis.  

2.1  Framework of CPR formulation 

The CPR formulation can be derived from a weighted residual method by transforming 

the integral formulation into a differential one. The hyperbolic conservation law can be 

written as   

PQP= N R · TU�Q� � 0                                                              �2.1� 

with proper initial and boundary conditions, where Q is the state vector, and TU is the flux 

vector. The computation domain Ω is discretized into � non-overlapping triangular elements 

WXYZY[J\ . Let ] be an arbitrary weighting function or test function. Multiplying Eq. (2.1) with 

an arbitrary weighting function ] and integrating over an element XY, we obtain   

^ _PQP= N R · TU�Q�` ]aX �  ^ PQP= ]aX N ^ ]TU�Q� · �bUa�cde � ^ R] · TU�Q�aXde � 0dede  

�2.2� 
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Let QY  be an approximate solution to the analytical solution Q on element XY. On each 

element, we assume that the solution belongs to the space of polynomials of degree � or less, 

i.e., QY f gh�XY�, (or gh if there is no confusion) with no continuity requirement across 

elements interfaces. Let the dimension of gh be 
 � �� N 1��� N 2�/2. In addition, the 

numerical solution QY  is required to satisfy Eq. (2.2) 

^ PQYP= ]aX Nde ^ ]TU�QY � · �bUa@cde � ^ R] · TU�QY �aXde � 0                     �2.3� 

The surface integral is not properly defined because the numerical solution is discontinuous 

across element interfaces. Following the idea used in the Godunov method, the normal flux 

term in Eq. (2.3) is replaced with a common Riemann flux, e.g.,  

Ti�QY� j TU�QY � · �bU k TGl�i  �QY, QY�, �bU�                                    �2.4� 

where QY� denotes the solution outside the current element XY. Instead of Eq. (2.3), the 

approximate solution is required to satisfy 

^ PQYP= ]aX Nde ^ ]TGl�i �QY , QY�, �bU�a@cde � ^ R] · TU�QY �aXde � 0      �2.5� 

Applying integration by parts again to the last term of the above LHS, we obtain 

^ PQYP= ]aX N ^ ]R · TU�QY �aXde N ^ ]mTGl�i �QY , QY�, �bU� � Ti�QY �na@cde � 0de     �2.6� 

Here, the test space has the same dimension as the solution space, and is chosen in a manner 

to guarantee the existence and uniqueness of the numerical solution.  

 Note that the quantity R · TU�QY � involves no influence from the data in the neighboring 

cells. The influence of these data is represented by the above boundary integral, which is also 

called a “penalty term”, penalizing the normal flux differences.  
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 The next step is critical in the elimination of the test function. The boundary integral 

above is cast as a volume integral via the introduction of a “correction field” on XY, KY f
gh�XY�, 

^ ]KYaXde � ^ ]BTiCa�cde                                                    �2.7� 

where BTiC � TGl�i �QY , QY�, �bU� � Ti�QY � is the normal flux difference. The above 

equation is sometimes referred to as the “lifting operator”, which has the normal flux 

differences on the boundary as input and a member of gh�XY� as output. Substituting Eq. 

(2.7) into Eq. (2.6), we obtain 

^ oPQYP= N R · TU�QY � N KY p ]aX � 0                                     �2.8�de  

 If the flux vector is a linear function of the state variable, then R · TU�QY � f gh. In this 

case, the terms inside the square bracket are all elements of gh. Because the test space is 

selected to ensure a unique solution, Eq. (2.8) is equivalent to 

PQYP= N R · TU�QY � N KY � 0                                                   �2.9� 

 For nonlinear conservation laws, R · TU�QY � is usually not an element of gh. As a result, 

Eq. (2.8) cannot be reduced to Eq. (2.9). In this case, the most obviously choice is to project 

R · TU�QY � into gh. Denote Π rR · TU�QY �s a projection of R · TU�QY � to gh. Once choice is  

^ Π rR · TU�QY �s ]aXde � ^ R · TU�QY �]aXde                                �2.10� 

Then Eq. (8) reduces to  
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PQYP= N Π rR · TU�QY �s N KY � 0                                           �2.11� 

with the introduction of the correction field KY , and a projection of Π rR · TU�QY �s for 

nonlinear conservation laws, we have reduced the weighted residual formulation to a 

different formulation, which involves no integrals. Note that for KY  defined by Eq. (2.7), if 

] f gh, Eq. (2.11) is equivalent to the DG formulation, at least for linear conservation laws; 

if ] belongs to another space, the resulting KY  is different. We obtain a formulation 

corresponding to a different method such as the SV method.  

 Next, let the DOFs be the solutions at a set of solution points (SPs) tuUYvw (x varies from 1 

to 
), as shown in Fig 2.1. Then Eq. (2.11) holds true at the SPs, i.e., 

PQY,vP= N Πv rR · TU�QY �s N KY,v � 0                                           �2.12� 

where Πv rR · TU�QY �s denotes the values of Π rR · TU�QY �s at SP x. The efficiency of the 

CPR approach hinges on how the correction field KY  and the projection Π rR · TU�QY �s are 

computed. To compute KY , we define � N 1 points named flux points (FPs) along each 

interface, where the normal flux differences BTiC are computed, as shown in Fig 2.1. We 

approximate (for nonlinear conservation laws) the normal flux difference BTiC with a degree 

k interpolation polynomial along each interface,  

BTiCy k zhBTiCy j {BTiCy,|H|}~
|                                         �2.13� 

where � is an face (or edge in 2D) index, and � is the FP index, and H|}~ is the Lagrange 

interpolation polynomial based on the FPs in a local interface coordinate. For linear triangles 
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with straight edges, once the solutions points and flux points are chosen, the correction at the 

SPs can be written as  

KY,v � 1|XY| { { !v,y.|BTiCy,|@y|     yfcde
                                     �2.14� 

                                             

  Figure 2.1. Solution points (squares) and flux points (circles) for a triangular element of 

� �  2 

where !v,y.| are lifting constants independent of the solution, @y is the face area, |XY| is the 

volume of XY. Note that the correction for each solution point, namely KY,v, is a linear 

combination of all the normal flux differences on all the faces of the cell. Conversely, a 

normal flux difference at a flux point on a face, say ��, �� results in a correction at a solution 

pint x of an amount !v,y.|BTiCy,|@y/|XY|. 
 Next, we focus on how to compute Πv rR · TU�QY �s efficiently. A brute-force 

implementation based on Eq. (2.10) requires high-order integral quadratures, and is 

expensive. Two more efficient approaches are developed in Ref. 42, and reviewed here for 

the sake of completeness.  

BT�Cy,J 

BT�Cy,� 

BT�Cy,# 
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Based on the solution at a SP, the flux vector at each SP can be computed. Then a degree 

k Lagrange interpolation polynomial for the flux vector is used to approximate the 

(nonlinear) flux vector 

TU�QY� k zh rTU�QY�s j { Hv�~�uU�TU�QY,v�v                                         �2.15� 

where Hv�~�uU� is the Lagrange polynomial based on the solution points tuUY,vw. After that, the 

projection is computed using 

Π rR · TU�QY�s � R · zh rTU�QY�s � { RHv�~ ·v TU�QY,v�                              �2.16� 

In this case, Π rR · TU�QY�s is a degree � � 1 polynomial, which also belongs to gh. 

Numerical experiments indicate that there is a slight loss of accuracy with the LP approach, 

but it is fully conservative [103].  

We recognize that the divergence of the flux vector can be computed analytically given 

the approximate solution using the chain rule, i.e., 

R · TU�QY,v� � PT�QY,v�P� N P��QY,v�P� � PT�QY,v�PQ PQY,vP� N P��QY,v�PQ PQY,vP�
� PTU�QY,v�PQ · RQY,v                                                                                                 �2.17� 

where 
c}Uc� is composed of the flux Jacobian matrices, which can be computed analytically. 

Then projection is approximately by the Lagrange interpolation polynomial of the flux vector 

divergence at the solution points, i.e., 

Π rR · TU�QY�s k { Hv�~�uU�v R · TU�QY,v�                                      �2.18� 
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Numerical experiments indicate that the CR approach is much more accurate than the LP 

approach, at the expense of full conservation [103]. 

Substituting Eq. (2.14) into Eq. (2.12) we obtain the following CPR formulation 

PQY,vP= N Π rR · TU�QY �s N 1|XY| { { !v,y.|BTiCy,|@y|yfcde
� 0               �2.19� 

    

                                                   

Figure 2.2. Efficient arrangement of solution (squares) and flux points (circles) for � � 2 
It can be easily shown that the location of SPs does not affect the numerical scheme for linear 

conservation laws [90]. For efficiency, therefore, the solution points and flux points are 

always chosen to include corners of the cell. In addition, the solution points are chosen to 

coincide with the flux points along cell faces, as shown in Fig 2.2(a) to avoid any solution 

reconstruction. Furthermore, in computations with hybrid meshes, the flux points are always 

the same for different cell types for ease of interface treatment, as shown in Fig 2.2(b). For 

the 2D cases presented here, the Legendre-Lobatto points along the edges are used as the flux 

points for both triangular and quadrilateral cells. Due to special choice of DOFs, the 

reconstruction cost in CPR is completely avoided. 
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2.2  Treatment of Viscous Terms 

2.2.1  Basic Framework 

The discretization of viscous term in the DG method has been studied extensively in the 

literature [3,8,9,18,28,32,50,72,97]. The extension of the CPR formulation to viscous flows 

follows existing compact approaches developed in [9,18,50,72]. The Navier-Stokes equations 

can be written as 

PQP= N R · TU�Q� � R · TU��Q, RQ�                                            �2.40� 

where  TU��Q, RQ� denotes the viscous flux vector.  

First, following [8], we introduce a new variable �bU 
�bU � RQ                                                                �2.41� 

Let �bUY be an approximation of �bU on XY, and �bUY f �gh, gh�. Many studies have found that the 

obvious choice of �bUY � RQY is not appropriate. Instead, the computation of �bUY needs to 

involve data from neighboring cells. The CPR formulation of Eq. (2.40) and Eq. (2.41) on a 

linear triangle XY can be expressed as 

PQY,vP= N Πv rR · TU�QY�s 

NΠv� rR · TU��QY, �bUY�s N 1|XY| { { !v,y.|�BTiCy,| � BT�,iCy,|�@y|yfcde
� 0                              �2.42� 

�bUY,v � �RQY�v N 1|XY| { { !v,y.|BQGl� � QYCy,|�bUy@y|yfcde
                      �2.43� 

where Π�  is the projection operator for the divergence of the viscous flux vector to gh, and  
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BT�,iCy j TU��QyGl�, RQyGl�� · �bUy � %TU��QY, RbbUY��y · �bUy                        �2.44� 

with QyGl� and RQyGl� the common solution and gradient on interface � respectively, and 

QY, x, � is the solution within cell � on FP � of face � or the trace of QY on �. The 

computational of Πv� rR · TU��QY, �bUY�s follows the LP approach. First, the viscous flux vector 

at each solution point is evaluated using  

TUY,v� � TU��QY,v, �bUY,v�                                                       �2.45� 

After that, a Lagrange polynomial for the viscous flux vector is built with the values at all the 

solution points, i.e., 

zh�TUY�� � { TUY,v� Hv�~
v                                                       �2.46� 

Finally the divergence of this polynomial is used as the projection 

Πv� rR · TU��QY, �bUY�s k R · zh�TUY�� � { TUY,v�
v · RHv�~                            �2.47� 

Various schemes for viscous fluxes differ in how the common solution QyGl� and the 

common gradient RQyGl� are defined. It is sometimes to use a face based notation, in which 

Qy� � QY and Qy� � QY�. 

2.2.2  Bassi-Rebay 1 (BR1) 

In Bassi and Rebay original approach [9], the simple averages of the solution at both 

sides of the face were used for the numerical fluxes, i.e., 

QyGl� � Qy� N Qy�2                                                           �2.48� 

RQyGl� � RQy� N RQy�2                                                      �2.49� 
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2.2.3  Local Discontinuous Galerkin (LDG) 

The idea of LDG [28] was proposed by Cockburn and Shu. The solution from one side of 

a face is used as the common solution, while the corrected gradient from the other side is 

used as the common gradient.  

Qy,|Gl� � Qy,|�                                                             �2.50� 

RQy,|Gl� � RQy,|�                                                          �2.51� 

We also can alternately take the left and right limits for Q and RQ. In other words, Qy,|�  and 

RQy,|�  are taken as the common solution and common gradient.  

The discretization of diffusive terms has been discussed by many researchers over the 

past decade. More compact and more accurate approaches were developed, which include the 

second Bassi and Rebay approach (BR2) [8], the I-continuous approach by Huynh [50], the 

interior penalty [33], and CDG [72]. In our study, only BR1 and LDG are considered, and 

LDG already provides good results.  
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CHAPTER 3.  ONE-DIMENSIONAL FREQUENCY-OPTIMIZED CPR 

FORMULATION 

In this chapter, the stability and accuracy of the CPR method for 1D linear problem is 

analyzed. Hybrid bases including both polynomial and Fourier bases are applied into the 

CPR method rather than the classic polynomial bases, with objective of resolving broad-band 

wave propagation problems. Free-parameters introduced by Fourier bases are optimized to 

minimize both the dispersion and dissipation errors by mimicking the DRP method [84, 85]. 

This method is named as frequency optimized CPR formulation (FOCPR). An analysis of the 

wave propagation properties of FOCPR is applied to assess both the stability and accuracy of 

the scheme. The mesh resolution analysis is applied to verify the optimization procedure by 

following the ideas [110]. Numerical tests are preformed to show that CPR scheme with 

optimized hybrid bases can resolve broad-band wave more accurately than that with the 

classic polynomial bases.  

1D FOCPR is studied in this chapter, and the methodology is extended to 2D in the next 

chapter.  

3.1  Framework of Wave Propagation Analysis 

3.1.1  Basic Idea 

The methodology of wave propagation analysis is introduced in this section. The 

approach is following the procedures by Hu [43] and Van den Abeele [86]. The simplest 1D 

conservation law that models wave propagation is used as the model problem. The 1D scalar 
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advection equation with periodic boundary conditions and a harmonic wave as initial solution 

is given as 

PAP= N � PAP� � 0                                                            �3.1� 

A��, 0� � MYh�                                                           �3.2� 

where � is the positive wave speed. A Fourier wave of the form  

A��, =� � A�M��h���������                                              �3.3�  

is introduced in this linear advection equation, which represents a sinusoidal wave train with 

a wave number � and an angular frequency �. Eq. �3.3� is substituted into Eq. �3.1�, and it is 

found that the following exact dispersion relation is  

� � 0        and       � � ��                                                 �3.4� 

� is the dissipation rate, which determines the exponential growth or decay of the 

amplitude. Non-dimensional quantities are used in our analysis. The reference length scale 

for the non-dimensionalization is set as ∆� and the time scale is = �  ∆�� . The dimensionless 

parameters are expressed as 


 � �∆�                                                                   �3.5� 

Ω � � ∆��                                                                  �3.6� 

where 
 and Ω are the non-dimension wave number and frequency, respectively.  The exact 

dispersion relation is given as follows with non-dimensionalization.  

Ω � 
                                                                 �3.7� 
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If the spatial derivative in the linear advection equation is discretized in space on a 

uniform grid with cell size  ∆� and the Fourier wave of the form Eq. �3.3� is applied in the 

discretization equation, then the resulting numerical solutions does not obey this exact 

dispersion relation any more, but a modified dispersion relation. This modified dispersion 

relation is close to the exact one, which is a measure for the accuracy of the spatial scheme. 

The modified dissipation rate should be non-positive, otherwise the solution will grow 

exponentially and thus divergence.  

3.1.2  Extension to 1D CPR 

To Eq. (3.1), a �� N 1� degree of freedom (DOFs) method will be applied on a uniform 

mesh ∆� for CPR formulation, while classic finite difference methods have only one DOF. 

On a local coordinate � f B�1,1C for each element XY. The approximate QY � ∑ ]vQY,v~�Jv[J  

can be written as a function of �, and ]v is the shape function. On the boundaries between 

two elements, a Riemann is used as the common flux term.  

T�AY�1�, AY���1�� � � _1 N &2 AY�1� N 1 � &2 AY���1�`                   �3.8� 

In �3.8�, & � 0 corresponds to a central flux and & � 1 corresponds to the upwind flux. 

Upwind flux is applied in our work. 

For 1D scalar advection equation on f B�1,1C , the CPR scheme is reduces to the 

following matrix form  

aAY,�a= N { ��v�JAY�J,v
h�J
v[J N { ��v�JAY�J,v

h�J
v[J � 0,        �� � 1, � , � N 1�            �3.9� 

The matrix components ��v�J ��a ��v�  are given in Appendix D.  
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Substitute of the expression of a Fourier wave A��, =� � A�M��h��������� into Eq. �3.1�, the 

numerical dispersion relation determined for upwind flux is given as 

aM=���Ω N M�����J N �� � � 0                                        �3.10� 

Eq. (3.10) has � N 1 solution, corresponding to the � N 1 eigenmodes of the numerical 

system. The quantity – �Ω is called Fourier footprint and � � ��� N ����, and the 

imaginary part ��� is a measure of dispersive properties of the scheme, whereas the real part 

��� represents the diffusive behavior which should be non-positive to keep the scheme 

stable.  

Note that a CPR scheme is using a polynomial approximation of degree �, wave with 

non-dimensional wave numbers 
 ranging from – �� N 1�0 � 
 � �� N 1�0 are captured, 

since there are � N 1 degrees of freedom per element. For classic FV method, the wave range 

is – 0 � 
 � 0, which corresponds to the one degree of freedom per element by such 

methods. To make a fair comparison between the FV and the different order CPR schemes, 

the plot for the CPR method should be downscaled with a factor � N 1, taking into account 

the higher number of degrees of freedom of CPR.  

The diffusive and dispersive properties are then plotted versus the wave number in Fig 

3.1by using the 4th order piecewise polynomial bases as local spaces in CPR methods with 

uniform solution point distribution. Fig 3.1 shows ��� and ��� for the fourth-order CPR 

scheme �� � 3�, when an upwind Riemann flux is used. For this scheme, 
 ranges from  

�40 to 40. When ��� and ��� are plotted versus the dimensionless wave number 
, there 

are � N 1 values for each 
, which correspond to the � N 1 eigenvalues of equation (3.10). 

The eigenvalue solution shapes should be examined to identify the physical ones. From Fig 
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3.1 of the mode shapes, the actual wave number to which a certain eigenvalue belongs can 

easily be determined.  

 

Figure 3.1.  Eigenvalues of the 4th order CPR schemes (  ¡¢ and  Im versus £) 

 

Figure 3.2. Diffusion error and dissipation error of the 4th order CPR schemes  

(��� and �Im versus 
) 

In Fig 3.2, the curves are only shown for positive 
 due to the symmetry. It is clear that 

the scheme is stable, because the dissipation errors ��� is always non-positive. Notice that 

the scheme becomes less accurate for increasing wave numbers. The present 4th order CPR 

scheme with a piece-wise polynomial as bases has good wave propagation properties for 

dimensionless wave number up to 
 k 5. 
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3.2  Hybrid Bases Including Both Polynomial and Fourier Bases 

The piecewise polynomial space is the common chosen approximation space, when 

discontinuous high-order method is used to solve partial differential equations (PDEs). 

However for some PDEs and initial/boundary conditions, piecewise polynomials may not 

provide the best approximation to the solutions, such as the boundary layer and highly 

oscillatory problems. The approximation spaces can be different with respect to each element 

and also to different time =, so the local approximation spaces can be any linear spaces.  

Cockburn [30] et al. proposed the use of the locally divergence-free polynomial space to 

resolve the Maxwell equations and achieved better results compared with the classical 

piecewise polynomial bases in DG method. The singular perturbation problems are solved by 

using exponentially fitted schemes by of Kadalbajoo and Patidar [52], and Reddy and 

Chakravarthy [73]. Christofi [20] used non-polynomial spaces in local essentially non-

oscillatory (ENO) reconstructions for solving hyperbolic conservation laws. The DG method 

bases on exponential functions and trigonometric functions is studied in [109] in order to 

obtain better approximation for specific types of PDEs and initial/boundary conditions. For 

the boundary layer problems, the slope of the solution near the boundary is very large, 

exponential functions achieved better results than the classic polynomial functions. For the 

highly oscillatory problems, the solution is better approximated by trigonometric functions. 

In our proposed method, hybrid bases including both polynomial and Fourier bases are 

developed to resolve broad-band wave propagation problems, rather than the classical 

polynomial bases. Polynomial bases, Fourier bases and hybrid bases are defined as follows, 

respectively. 

> f �¤���1, �, �#, �� � �                                                    �3.11� 
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> f �¤�������!1 " ��, ����!1 " ��, ����!2 " ��, ����!2 " �� � �                    �3.12� 

> f �¤���1, �, �#, �� � , ����!1 " ��, ����!1 " ��, ����!2 " ��, ����!2 " �� � �       �3.13�  

�α1, α2, � � are Free-parameters. The Fourier bases are applied here in order to resolve a 

relatively large wave number for a wave propagation problem, while the polynomial bases 

are applied here in order to keep a certain order of accuracy.  

Due to Fourier spaces, the exact dispersion relation Ω � 
 is exactly satisfied at a certain 


. For example if the base > �  �1, �, ����2 " ��, ����2 " ��� is applied, the analytical 

physical dimensionless dispersion relation should be Ω � 
 � � " ∆� � 2 " 2 � 4.  This 

means that the dispersion errors ��� � 
�and dissipation errors ��� should equal to zero at 

non-dimensional wave number 4.  

 

Figure 3.3. Dispersion errors ��� � 
� and Dissipation errors ��� versus 
 

 for > �  �1, �, ����2 " ��, ����2 " ���  

In Fig 3.3, both dispersion errors ��� � 
� and dissipation ���  are plotted with hybrid 

bases > �  �1, �, ����2 " ��, ����2 " ���. It shows that dispersion and dissipation errors are 

equal to zero at non-dimensional wave number 4. Uniform point distribution is used in this 

case. Due to this specific property, we can design CPR schemes with specific hybrid bases to 

exact simulate a wave equation with certain non-dimensional wave numbers.   
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3.3  Optimization of Hybrid Bases 

In this section, free-parameters in the hybrid bases are optimized to minimize both 

dispersion and dissipation errors by mimicking the similar idea of dispersion-relation-

preservation (DRP) [84, 85]. The wave propagation characteristics are encoded in the 

dispersion relations of the governing equations according to wave propagation analysis. It is 

expected that the numerical solutions of high-order formulations will have the same wave 

propagation characteristics as those of the solutions of the governing equations if both 

systems of equations have the same dispersion relation. So minimum numerical dispersions 

and dissipations are required to get an accurate amplitude and phase for numerical 

calculation of wave propagation [84, 85]. The optimized schemes such as the central DRP 

[84, 85] and the upwind DRP [111, 112] schemes are to assure the transform of the scheme 

be a good approximation of that the partial derivative over a certain range of wave number.  

3.3.1  Dispersion-Relation-Preservation (DRP) Method    

The main idea of DRP schemes is to optimize high order finite difference scheme not 

only meets the usual conditions of consistency, stability and convergence, but also has the 

same or almost dispersion relation as the original partial differential equations. As we know 

that the dispersion relation is a functional relation between the angular frequencies of the 

wave and the wave numbers of the spatial variables.  

In developing finite difference approximation of partial derivatives, the standard way is 

to use a truncated Taylor series. But from the wave propagation point of view, the motivation 

is to preserve the dispersion relation, so the finite difference approximation should be 

constructed so that the Fourier transform is preserved. In other words, it would be desirable 
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to have a finite difference scheme with nearly the same Fourier transform in space or time as 

the original partial derivative. The DRP methodology is given here briefly. 

The approximation of the first-order spatial derivative 
c¥c� on uniform grids for a finite 

difference method is given by  

¦PAP�§Y k 1∆� { �vA��Y N x∆��  ¨
v[\                                          �3.14� 

where © values of � to the right and � values of � to the left of this point. The finite 

difference methods will be referred as the standard schemes if the coefficients �v are 

determined by equating coefficients of the same powers of ∆� with Taylor expansion series. 

For DRP method, the coefficients �v are to be chosen in a different way. The basic idea of 

DRP is that the coefficients are determined by requiring the Fourier transform of the finite 

difference scheme on the right of (3.14) to be a close approximation of the partial derivative 

on the left. The finite difference equation (3.14) is a special case of the following equation in 

which � is a continuous variable: 

PAP� ��� k 1∆� { �vA�� N x∆��¨
v[\                                           �3.15� 

The Fourier transform and its inverse of a function are related by 

Aª�!� � 120 ^ A���M�Y«�a�I
�I                                             �3.16� 

A��� � 120 ^ Aª�!�MY«�a!I
�I                                              �3.17� 

The Fourier transform of the both sides of (3.18) is 

�!Aª k ¬ 1∆� { �vMY«v∆�¨
v[ �\  Aª                                     �3.18� 
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By comparing the both side of equation (3.21) to get the following equation 

!® � ��∆� { �vMY«v∆�¨
v[ �\                                            �3.19� 

The left side is the effective wave number and ᾱ∆� is a function of !∆� with the period 2π. 

�v were chosen to minimize the integrated error E defined in (3.20) in order to assure that the 

Fourier transform of the finite difference scheme is a good approximation of the partial 

derivative over the range of wave numbers of interest. 

± �  ^ |!∆� � ᾱ∆�|#²/#
�²/# a�!∆�� � ^ ³�
 � { �vMYv�¨

v[ �\ ³#²/#
�²/# a
         �3.20� 

The condition that ± is a minimum are 

P±P�v � 0,    x �  �� =� ©                                                 �3.21� 

(3.21) provides a system of linear algebraic equations by which the coefficients �v can be 

easily determined.  

3.3.2  Optimization of Free-Parameters of Hybrid Bases    

Free-parameters in the hybrid bases for the CPR method are optimized by mimicking the 

similar idea of DRP [84, 85] to maximize the resolvable wave number given a certain error 

threshold. The following two conditions are applied.   

� The optimization process has to allow the normalized value of ΩIm �⁄ � 
/� and 

ΩRe � ⁄ to be as close to zero as possible for certain integration wave numbers. � is the 

order of DOFs. 

± �  ^ |ΩIm �⁄ � 
/�|#a
�
� N ´ ^ |ΩRe �⁄ |#a
�

�                        �3.22� 



www.manaraa.com

 30  

 

The weight λ is set as 0.2 to balance the H# norm of the truncated errors of dispersion and 

dissipation. M is a predetermined optimized range of wave numbers.   

� In order to quantify  the resolution of the scheme, set the dispersion and dissipation 

errors to less than 0.5%, i.e.[43]  

|Ω�� � K| � 0.005          and            |Ω��| � 0.005                            �3.23� 

Table  3.1.  Optimization free-parameter ¶ of Fourier bases  

for · � �¸, ¹, º»¼�½¹�, ¾¿º�½¹�� 

Integration range �M� α ± - Dispersion ±-diffusion ± 

π k 3.14          1.4 2.1477M � 09 2.7483M � 08 7.6444M � 09 

5 " π/4 k 3.93  1.7 1.6503M � 07 1.0139M � 06 3.6781M � 07 

3 " π/2 k 4.71  2.1 3.8702M � 06 2.4832M � 05 8.8367M � 06 

7 " π/4 k 5.50  2.4 6.1540M � 05 2.6556M � 04 1.1465M � 04 

2 " π k 6.28 2.7 6.5403M � 04 2.1424M � 03 1.0825M � 03 

Table 3.2.  Maximum resolvable wave number 
G   

For > � �1, �, ����!��, ����!���  

Integration range α 
G  

π k 3.14          1.4 3.9336 

5 " π/4 k 3.93 1.7 4.2336 

3 " π/2 k 4.71 2.1 4.8336 

7 " π/4 k 5.50  2.4 2.0336 

2 " π k 6.28 2.7 1.6336 
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In Table 3.1, hybrid bases �1, �, ����! " ��, ����! " ��� are applied in CPR method with 

fourth degree of freedom. E-dispersion represents the dispersion integration errors, and E-

dissipation means the dispersion integration errors.  E represents the dispersion errors plus 

0.2 " dissipation errors, which are defined in Eq. (3.22). Free-parameters α in Table 3.1 are 

found to minimize the integration error ± through numerical searches for a certain wave 

number integration range M. In other words, the CPR schemes with ! shown in Table 3.1 

obtain the minimum dispersion errors with respect to different range M.  

In Table 3.2, the maximum resolvable non-dimensional wave numbers 
G are 

determined using Eq. (3.23) for each α with respect to a certain integration wave number e. 

This means when the non-dimensional wave numbers are smaller than 
G, Eq. (3.23) is 

satisfied. In other words, when the non-dimensional wave number is greater than 
G, the 

dispersion and dissipation errors are greater than 0.5%. So 
G is called the maximum 

resolvable non-dimensional wave number. 

From Table 3.2, we can see that 
G increases and then decreases as the integration range 

M increases. α � 2.1 is referred as the optimized free-parameter, which minimizes the 

integration error ± over a relatively large wave number integration range 4.71, and at the 

same time the resolvable wave number 
G reaches 4.83, with which both dispersion and 

dissipation errors are less than 0.5% defined in Eq. (3.23). In other words, the maximum 

resolvable non-dimensional wave number 
G is equal to 4.83 corresponding to the integration 

range M �  3 " 0/2, and α � 2.1 gives smallest dispersion errors.  
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The same procedure is applied for the higher DOFs scheme. α � 4.0 is the optimized 

free-parameter with the integration wave number range 8.60 for �1, �, �2, �3, ����! "
��, ����! " ���, and α1 � 4.5 and α2 � 3.0 are the optimized free-parameters with the 

integration wave number 9.42 for �1, �, ����!1 " ��, ����!1 " ��, ����!2 " ��, ����!2 " ��� 

with the dispersion and dissipation errors to less than 0.5%. 

 

Figure 3.4. Comparison of normalized dispersion errors ���� � K�/N and normalized 

dissipation errors ���/�  versus 
 �⁄  for 4 DOFs for 4 DOFs hybrid bases 

  

Figure 3.5. Comparison of normalized dispersion errors ���� � 
�/� and normalized 

dissipation errors ���/�  versus 
 �⁄  for 6 DOFs for 4 DOFs hybrid bases 
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The upwind CPR schemes with the optimized hybrid bases are compared with the 

corresponding polynomial bases, Tam & Webb’s central DRP and Zhuang & Chen DRP in 

terms of dispersion and dissipation errors. In order to compare different DOFs schemes, 

normalized values are applied here. For high-order CPR schemes, uniform point distribution 

is used.  

 

Figure 3.6. Comparison of normalized dispersion errors ���� � 
�/� and normalized 

dissipation errors ���/� versus 
 �⁄  for 6 DOFs hybrid bases with more Fourier terms 

In Fig 3.4, the upwind CPR formulation with the optimized hybrid bases > �
 �1, �, ����2.1 " ��, ����2.1 " ��� is compared with the corresponding formulations. The 

normalized dispersion errors and dissipation errors are plotted versus normalized non-

dimensional wave numbers. The optimization scheme shows less dispersion errors than the 

polynomial base and the Tam & Webb’s central DRP scheme, but a little bit larger dispersion 

errors than Zhuang & Chen’s upwind DRP scheme. It is able to resolve the waves with non-

dimensional wave numbers as high as about 1.3 which is very close to the seven stencil finite 

difference schemes, although it is a four stencil scheme.  

In Fig 3.5, the optimized six stencil scheme �1, �, �2, �3, ����4.0 " ��, ����4.0 " ��� has 

obviously less dispersion and dissipation errors than the corresponding polynomial bases, 
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central DRP and upwind DRP. And it is able to resolve the waves with non-dimensional 

wave number as high as about 1.6.  

In Fig 3.6, the optimized six stencil scheme �1, �, ����3.0 " ��, ����3.0 " ��, ����4.5 "
��, ����4.5 " ��� has less dispersion and dissipation errors than those of 

�1, �, �2, �3, ����4.0 " ��, ����4.0 " ���. And it is able to resolve the waves with non-

dimensional wave number as high as about 1.8. From all above analysis, the higher orders the 

schemes are and the more Fourier terms are used, the less dispersion and dissipation errors 

there are.   

3.4  Mesh Resolution Analysis  

In this section, the mesh resolution analysis is applied here to verify the optimization 

procedure by following the ideas [51, 110]. The number of grid points per wavelength (PPW) 

is presented, with objective of accurately simulating wave propagation over large distance. 

As we know that numerical errors arise from both the spatial and the temporal discretization. 

They include both phase and amplitude errors, which depend on the wave numbers, the grid 

spacing, the Courant number, and the direction of propagation relative to the grid. The 

dependence of the phase speed on the wave numbers results in numerical dispersion. This 

section presents the grid resolution required to achieve a specific level of accuracy as a 

function of the propagation distance expressed in terms of the wavelength for the previous 

optimized hybrid bases. Emphasis is on methods requiring under 60 grid points per 

wavelength (PPW) for accurate simulations with propagation distances of 200 wavelengths. 

The purpose is to aid in verifying the optimization procedure for the CPR method with 

hybrid bases. Here we only consider the accuracy of the interior CPR scheme without 
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considering boundary conditions. For the analysis, only the standard one order time 

discretization is used as time marching methods.  

The mesh resolution analysis is also based on Fourier analysis in the absence of 

boundary conditions. In one dimension, the errors produced by the numerical formulations 

are function of the non – dimensional wave number 
  and the courant number Ã � �O/∆�. 

In multi – dimensions, the errors depend on the direction of propagation relative to the grid. 

The mesh resolution analysis is based on the amplification factor Ä�
, Ã� � A��J/A�, 

where � is the current time step and � N 1 is the next time step. PPW is the points per wave 

length and PPW � ÇÈÉ�Ê�ËÌÍÎ∆Ï � 2π/�k∆x�.  

The local amplitude and phase errors are, respectively 

±uu�u� � |Ä| � 1                                                            �3.24� 

±uu�uÑ � � Ò
Ã � 1                                                       �3.25� 

Where Ò � =���J�ÄIm ÄRe⁄ �, and ÄIm and ÄRe are the real and imaginary part of σ, 

respectively. Criterion for comparing schemes is based on the global amplitude and phase 

errors which are 

±uu�u� � �|Ä|~~Ô"i/Õ � 1� � 10%                                           �3.26� 

±uu�uÑ � � " Ögg] " ÒÃ N 20Ö � 10%                                    �3.27� 

Where � is the number of the wavelength travelled. Using the above formulas with a very 

small Courant number gives the errors for the spatial operator alone. In the following figures, 

the various methods are compared in terms of the PPW required to keep both global 
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amplitude and phase errors less than 10% as a function of the number of wavelength 

traveled.  

In this section, we only consider the errors produced by the spatial operators. The error 

from a spatial discretization is often plotted in terms of the non-dimensional wavenumber. 

Plots of the local phase and amplitude errors can be much more revealing and provide a 

stronger physical connection. The global errors are even easier to interpret. In studying the 

dependence of the PPW requirements on the number of wavelengths travelled, the emphasis 

is on the wavenumber present in the simulation which is most poorly resolved among those 

wavenumbers which are deemed to be significant. The dependence of the PPW requirements 

on the number of wavelengths is a reasonable measure for selecting a grid density and 

reveals the implications of optimization. In this section, only spatial operators are considered 

by setting Courant numbers small enough.  

In Fig 3.7, point per wavelength (PPW) requirement are presented for upwind CPR with 

respect to �1, �, ����! " ��, ����! " ���. α � 2 is superior up to a distance of travel about 

45 wavelengths based on 10% global phase error criterion and about 15 wavelengths based 

on 10% global amplitude error criterion and requires about less than 5.0 PPW. Such 

behavior is typical of optimized schemes. Usually aggressive optimization leads to excellent 

performance for small distances of travel but poor performance for longer distances. This 

property agrees with the previous analysis that the optimized free-parameter α � 2.1, which 

is close to 2, shows good dispersion and dissipation properties with the relatively large wave 

number given a certain resolution error criterion. In Fig 3.8, the PPW requirements for 

upwind CPR schemes with �1, �, �#, �$, ����! " ��, ����! " ��� are presented. ! � 4 shows 

typical optimization behavior which requires about 4.5 PPW for about 40 wavelength travel 
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distance based on 10% phase error criterion and which requires about 4.5 PPW for about 25 

wavelength travel distance based on 10% amplitude error criterion.  

 

Figure 3.7. Grid resolution requirements based on globe amplitude and phase errors for 

hybrid bases �1, �, ����! " ��, ����! " ��� 

 

Figure 3.8. Grid resolution requirements based on globe amplitude and phase errors for 

hybrid bases �1, �, �#, �$, ����! " ��, ����! " ��� 

In Fig 3.9, the PPW requirements for CPR schemes with �1, �, ����!1 " ��, ����!1 "
��, ����!2 " ��, ����!2 " ��� are presented. α1 � 3.0 and α2 � 4.0  shows the typical 

optimization behavior too and the propagation distance is short, that requires about 4.0 PPW 
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for about 125 wavelength travel distance base on 10% phase error criterion and require about 

5.0 PPW for about 40 wavelength travel distance based on 10% amplitude error criterion.  

 

Figure 3.9. Grid resolution requirements based on globe amplitude and phase errors for 

hybrid bases �1, �, ����!1 " ��, ����!1 " ��, ����!2 " ��, ����!2 " ��� 

The PPW analysis matches the optimization analysis perfectly, and both methods can be 

used to verify each other. More Fourier terms there are, the fewer PPW are required. For 

optimized schemes, when the degree of freedom increases, not only does fewer PPW require, 

but also the propagation distance is longer. Because the optimized schemes are optimized for 

a given range of wave number, they required fewer PPW if the propagation distance is 

relative short. As the number of wavelength traveled increase, the advantage of the optimized 

schemes diminished as the required PPW increase. However if fewer PPW is required, the 

use of optimized scheme not only gives most accurate results but also results in significant 

saving of CPU time. 
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3.5  Numerical Tests 

3.5.1 Exact Solution for 1D Wave Equation with Sine Wave as an Initial 

Condition 

According to previous Fourier analysis, the exact dispersion relation Ω � 
 is exactly 

satisfied at a certain 
 because of Fourier bases in hybrid bases. This problem is designed to 

verify the performance of the wave propagation characteristics of CPR formulation. The 4th 

order DOFs hybrid bases �1, �, ����!��, ����!��� are applied here and 1D convective wave 

equation is considered.  

PAP= N � PAP� � 0    �� � 1�                                                   �3.28� 

On the uniform mesh with the initial condition is given as follows 

A��, 0� � ����0 " ��                                                    �3.29� 

0 is the physical wave number for this initial condition. The procedures designed to catch the 

initial physical wave number are given as follows.  

• First set grid size is equal to ∆�, and calculate the non-dimensional wave number in the 

initial condition in Eq. �3.29�. 


J � � " ∆� � 0 " ∆�                                                     �3.30� 

where the non-dimensional wave number is equal to the value (the physical wave number 

times the grid size). 

• Choose a 4th order DOFs hybrid base �1, �, ����! " ��, ����! " ��� and calculate the 

non-dimensional wave number on the standard computational domain related to the 

hybrid bases.  
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# � ! " ∆�    ��a   ∆� � 2    ×Y�|ØÙÚÛÛÛÜ   
# � 2 " !                                �3.31� 

• Finally set these two non-dimensional wave numbers equal to each other to get the 

parameters in the hybrid bases 


J � 
#    ×Y�|ØÙÚÛÛÛÜ    ! � �0 " ∆�� 2                                         �3.32�⁄  

           
(a)                                                                         (b) 

Figure 3.10. Exact solution for 1D wave equation with sine wave as an initial condition 

∆t � 0.01, T � 60,  (a) α � �π " ∆x� ∆ξ⁄ � Þ# , ∆x � 1, (b) α � �π " ∆x� ∆ξ⁄ �  π, ∆x � 2 

Fig 3.10 shows that the designed spaces exactly numerically simulate the wave equations 

�3.28� with the initial condition �3.29�. (a) The space r1, �, �����0 " ��/2�, �����0 " ��/
2�s  is exactly simulating the wave equation when ∆� � 1 (b) The space �1, �, ����0 "
��, ���0 " ��  is exactly simulating the wave equation when  ∆� � 2. 

3.5.2 A Benchmark Problem-CAA Workshop (2004) 

A benchmark problem is applied here to verify some properties of the bases. The 

governing equation is the scalar wave equation with unit wave speed as defined as equation 

�3.28� with the following initial condition 

A��, 0� � B2 N ����& " ��CM�¤B���2�� 10⁄ �#C,   & � 1.7 �u 4.6               �3.33� 
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Two different frequencies β � 1.7 and β � 4.6 are considered, and set ∆� � 1 for an 

equivalent 1 DOF. At this grid resolution, the high frequency wave embedded in the initial 

condition only has about 3.7 and 1.9 points-per-wave (PPW). It is therefore a challenge for 

any numerical scheme to adequately resolve the high frequency wave.  

The hybrid bases including Fourier bases which can resolve broadband wave propagation 

problems are applied in order to get more accurate results in this challenge situation. In order 

to get a better simulation for this problem, firstly find the approximation space�1, �, ����! "
��, ����! " ���, which can exactly simulation the initial high frequency wave condition 

����& " ��, then apply this approximation space for the wave equation with the initial 

condition of Eq. �3.33�.   
For the case β � 1.7, if we set ∆� � 3 and follow the procedures described in the last 

section to get � � 2.55 for the 4th DOFs hybrid bases �1, �, ����! " ��, ����! " ���. It is 

expected that the hybrid bases with � � 2.55 can exactly simulate the wave equation with 

the initial condition ����& " ��. The time integration was carried out using a fourth-order 

four stage Runge-Kutta scheme. A constant time step 0.05 was used for all cases.  

In Fig 3.11, the numerical results of spaces �1, �,  �#,  ���,�1, �, ����2.55 " ��, ����2.55 "
��� and �1, �, ����4.0 " ��, ����4.0 " ��� are presented. It is obvious that � � 2.55 show 

much less dissipative behavior. This confirms our expectation.  

In Fig 3.12, the solutions of the upwind CPR scheme with the optimized approximation 

space 6th DOFs �1, �, �#, ��, ����4.0 " ��, ����4.0 " ���and�1, �, ����3.0 " ��, ����3.0 "
��, ����4.5 " ��, ����4.5 " ��� are compared with the 6th order polynomial approximation 

space for initial conditions for both & � 1.7 ��a 4.6 with > � 500@ and ∆� � 5. Both 
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hybrid bases show better simulations than the polynomial approximation space. It is clear 

that the more Fourier bases there are, the more accurate the results are. All of results agree 

with our expectation.                                                       

 

Figure 3.11. Numerical solution of 1D wave equation with the initial condition (3.33) for 

& � 1.7 (> � 450@ and ∆� � 3, 4 DOFs upwind CPR scheme) 

 

Figure 3.12. Numerical solution of 1D wave equation with the initial condition (3.33) 

 (> � 500@ and ∆� � 5, 6th DOF upwind) and first row & � 1.7 and second row & � 4.6     
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3.5.3 An Artificial “Broadband” Wave 

The upwind CPR schemes are tested for an artificial “broadband” wave, which is The 

upwind CPR schemes are tested for an artificial “broadband” wave, which is followed the 

same procedure in [99]. The composed three waves are given as following 

A���� � ����0 " �/3� N ����0 " �/6� N ����0 " �/12�                       �3.34� 

 

Figure 3.13. The formation of a “broadband” wave 

The three waves represent short, medium and long waves and the wavelengths are 6, 12 

and 24 respectively. The initial form is displayed in Fig 3.13. The computational domain is 

chosen to be B�12, 12C and ∆= � 0.1@ and > � 24@.   

In Fig 3.14, the numerical results of the upwind CPR are compared with respect to bases 

�1, �, �#, ��, �$, �ä�, and �1, �, �#, ��, ����4.0 " ��, ����4.0 " ��� for ∆� � 6.0. Points-per-

wavelength (PPW) is equal to 6.0 for the short wave. According to mesh resolution analysis, 

PPW requirement for �1, �, �#, ��, ����4.0 " ��, ����4.0 " ��� is about 4.5 and PPW 

requirement for �1, �, �#, ��, �$, �ä� is about 6.0. Both PPWs are less than 6.0. If the short 

wave dominants the errors, it is expected that there is no big difference for these two schemes 

according to PPW analysis, which agrees with the Fig 3.14.   
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In Fig 3.15, the numerical results of the upwind CPR are compared with respect to bases 

�1, �, �#, ��, �$, �ä�, and �1, �, �#, ��, ����4.0 " ��, ����4.0 " ��� for ∆� � 8.0. Points-per-

wavelength (PPW) is equal to 4. 5 for the short wave. The optimized hybrid base’s PPW is 

about 4.5 and the polynomial base’s PPW is about 6.0. Therefore, it is expected that the 

optimized hybrid base should perform better than the corresponding polynomial base, 

because only the former base’s PPW is close to the PPW requirement for the initial short 

wave and the latter’s PPW 6.0 is much larger than the initial short wave PPW requirement 

4.5. In Fig 3.15, the simulation results agree with our expectation. In other word, the hybrid 

base performs better than the corresponding polynomial bases.  

 

Figure 3.14. Comparison of a “broadband” wave at ∆� � 6.0  

 

Figure 3.15. Comparison of a “broadband” wave at ∆� � 8.0  
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CHAPTER 4.  TWO-DIMENSIONAL WAVE PROPAGATION 

ANALYSIS 

4.1  Wave Propagation Analysis 

The extension of the wave propagation analysis to 2D is described in this section. We 

consider the 2D linear advection equation with periodic boundary condition mimicking the 

ideas by Hu [43] and Van den Abeele [87]  

PAP= N �� PAP� N �× PAP� � 0                                                       �4.1� 

with �U � m�� �×nå � ��U � �B���/ ���/Cå. The vector �U is the wave propagation velocity 

and is defined by the Cartesian components �� and �× or defined by the amplitude � and the 

direction of the wave propagation /. A plane harmonic wave is given  

A�=, uU� � A��=� " exp���bU · uU � ��=�                                       �4.2� 

with uU � B�  �Cå and � � �B���.  ���.Cå, and . is the orientation of the wave. Substituting 

the above equation into �4.1�, the following exactly dispersion relation is obtained: 

� � è�è�����/ � .�                                                      �4.3� 

The numerical dispersion relation corresponding to a discretization of the linear 

advection Eq. �4.1� on a uniform quadrilateral cell grid, as shown Fig 4.1, with the upwind 

CPR formulation is compared with the exact dispersion relation to study the dispersion and 

dissipation behavior. As for the 1D analysis, all quantities in this section are non-

dimensional. In the following sections, the upwind CPR formulation with hybrid bases for 

quadrilateral and triangle cell grids will be discussed.  
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The stability and accuracy of the upwind CPR formulation with hybrid bases are 

discussed in this section. The computational domain is divided into rectangular element ±�i 

by straight lines � � �i and � � ��, i.e., ±i� � B�i, �i�JC < B��, ���JC, as shown in Fig 

4.1 Set K� � K×, ��a K� � �i�J � �i,   K× � ���J � �� . 

                                                         

Figure 4.1. Rectangular mesh pattern and local coordinate system. 

Then using upwind scheme and tensor product basis on f B�1,1C < B�1,1C, Eq. �4.1� can be 

written in the following form.  

PébbUi,�P= N  �� " m��ébbUi,� N ��JébbUi�J,� n N  �× " m©�ébbUi,� N ©�JébbUi,��J n � 0     �4.4� 

ébbUi,� denotes the vector containing all the solution points in the local element B�1, 1C <
B�1,1C. The matrix elements ��, ��J, ©� and ©�J are given by in the Appendix D.  

��, ��J, ©� and ©�J are defined in Appendix D. By supplying equation �4.2� and tensor 

product basis into Eq. �4.4�, the numerical dispersion relation is given by 

aM= r��Ωê N ���/�M�Y�GlÙë��J N ��� N ���/�M�Y�ÙYië©�J N ©��s � 0     �4.5� 

The determinant of the coefficient matrix must be zero for a non-trivial solution of  A, 

that determines the dispersion relation for the semi-discretization equation. From Eq. �4.5� Ωê 

∆� 

∆� 
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should be found and compared to the non-dimensional exact frequency Ω, which is given by 

the exact dispersion relation Ω � 
����. � /�. Equation �4.5� has � " � eigenvalues and 

� � � N 1, corresponding to the eigenmodes of the numerical system. As same as the one 

dimensional analysis, the quantity ��Ωê is also called Fourier footprint � � �� N ���� of 

the spatial discretization. The imaginary part ��� is a measure of the dispersive properties of 

the scheme, whereas the real part �� reflects the diffusive behavior and should be non-

positive for stable schemes for all of 
, . and /.  

 

Figure 4.2. Dispersion and diffusion error as a function of the wave number  

for . � / � 0/6 

Fig 4.2 shows the eigenvalues of Eq. �4.5� as a function of the wave number 
 at . � / �
0/6 for 4th DOFs with hybrid tensor product bases. The choice of . � / corresponds to a 

propagation direction parallel to the orientation of the plane wave. The exact dispersion 

relation is given by Ω � 
 in this case. For this choice, the wave length in the propagation 

direction is minimal, leading to the most severe test of the accuracy of the scheme. The wave 

propagation is anisotropic, especially for under-resolved waves. It can be concluded from the 
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right figure of Fig 4.2 that the scheme is stable for . � / � 0/6, since �� are always non-

positive.  

  

Figure 4.3. Phase speed ��� 
⁄ � as function of . �� /� for 
 �  0 

 

Figure 4.4. Phase speed ��� 
⁄ � as function of . �� /� for 
 �  1.5 " 0 

In Fig 4.3, phase speed ���/
� is plotted as a function of angle �. � /� for 
 �  0, 

and it is obvious that errors of �1, �, ������, ������� < errors of �1, �, ����2 " ��, ����2 " ��� 

< �1, �, ����3 " ��, ����3 " ���. In Fig 4.4, phase speed ���/
� is plotted as a function of 

angle �. � /� for 
 �  1.5 " 0 and it is shown that that errors of �1, �, ����2 " ��, ����2 "
��� < errors of �1, �, ������, ������� < �1, �, ����3 " ��, ����3 " ���. It is obvious that the 
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errors of non-dimensional wave number 
 �  0 are less than the errors of 
 �  1.5 " 0 for 

dispersion errors. 

 

Figure 4.5. Dissipation rate ����� as function of . �� /� for 
 �  0 

 

Figure 4.6. Dissipation rate ����� as function of . �� /� for 
 �  1.5 " 0 

In Fig 4.5, dissipation rate ����� is plotted as a function of angle �. � /� for 
 �  0, 

and it is obvious that errors of �1, �, ������, ������� < errors of �1, �, ����2 " ��, ����2 " ��� 

< �1, �, ����3 " ��, ����3 " ���. In Fig 4.6, dissipation rate ����� is as a function of angle 

�. � /� for 
 �  1.5 " 0 and it is shown that that errors of �1, �, ����2 " ��, ����2 " ��� < 

errors of �1, �, ������, ������� < �1, �, ����3 " ��, ����3 " ���. As same as the phase speed 

errors, that the errors of non-dimensional wave number 
 �  0 are less than the errors of 


 �  1.5 " 0 for dissipation errors. 
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It shows that the accuracy of different schemes depends on different non-dimensional 

wave numbers. It can be observed that the dissipation error is relatively larger than the 

dispersion error. All of above four Figures indicate that both the dispersion and dissipation 

errors are the largest in the direction of θ � 0 or  θ � 0/2,  which can be verified by the 

dispersion relation �4.5�. And the dispersion relation in the direction θ � 0 or  θ � 0/2 is 

the same as the corresponding previous one-dimensional analysis.  

4.2  Numerical Test 

4.2.1  Two-Dimensional Acoustic Wave Propagation 

The propagation of acoustic waves generated by an acoustic pulse is simulated in 2D. 

The acoustic perturbations have small amplitude compared to the ambient flow variables. 

The exact solution to the LEEs for these problems can thus be used as a reference. The 

governing equations for the 2D non-linear Euler equations 

PQP= N P±P� N PTP� � 0                                                                  �4.6� 

where Q, E and F are vectors given by 

Q � í îîAîïî±ð ,    ± �  ñ îAîA# N ¤îAïA�î± N ¤�ò ,    T � ñ îïîAïîï# N ¤ï�î± N ¤�ò                        �4.7� 

with î the mass density, A and ï the velocity components in � and � directions and ¤ the 

pressure. The total energy ± is defined by the following equation 

± � 1ó � 1 ¤î N A# N ï#2                                                         �4.8� 
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where ó is set to 1.4 which is the ratio of specific heat to air. The initial solution is an 

acoustic pulse with a Gaussian profile and is set as same as one by Kris [67, 69] 

î � îI _1 N 0.001 " M�¤ ¬� �� � 0.5�# N �� � 0.5�#ó�# `                    �4.9� 

g � gI N �I# �î � îI�                                                     �4.10� 

A � 0                                                                   �4.11� 

ï � 0                                                                  �4.12� 

And the ambient pressure, mass density and the half-width of the Gaussian profile are given 

as follow 

gI � 1,     îI � 1,    u� � 0.05                                              �4.13� 

The exact solution of the LEEs for the acoustic pressure field is given as   

g�G�=, �, �� � g � gI � 0.001 " �I# ô#2 ^ M�¤ ¬� ¦�ô2 §#�I
� ������I=�õ���=��a�       �4.14� 

with ö � ÷�� � 0.5�# N �� � 0.5�# and õ� is the zero-th order Bessel function of the first 

kind which is used as a reference solution referring to [44] and [46]. ô is the halfwidth of the 

Gaussian profile and is set as 0.05.  

The domain under considerations is a square with an edge length equal to one, B0,1C <
B0,1C. This domain is discretized by a uniform Cartesian grid. The computations are carried 

out on three different structure grids �5 < 5�, �10 < 10� and �20 < 20� on a square domain 

B0,1C < B0,1C. Roe’s scheme is used as approximate Riemann solver. Time marching was 

done with a fourth-order, four stage R-K scheme. And all numerical tests are carried out with 

∆= � 0.0001�, > � 0.3@ and Gauss-Lobatto points are used as distribution points for each 

element for CPR schemes. Structured quadrilateral 10 < 10 grids are given on left of Fig 4.7 
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and pressure contours are given on the right of Fig 4.7 which is based on tensor product basis 

with approximation spaces �1, �, �#, ���. Wave has not yet reached the boundary of the 

computational domain at > �  0.3@ and thus the far field boundary condition has no 

influence on the solution.  

The profiles of the acoustic pressure � � 0.5 at > �  0.3@ along with the exact acoustic 

pressure solution of the LEEs are plotted based on the upwind CPR schemes based on hybrid 

bases with different parameters. We focus on the comparison of the results between the 

optimized hybrid bases and other hybrid bases.   

   

Figure 4.7. Structured quadrilateral 10 < 10 grids (left) and pressure contours (right) based 

on tensor product basis with polynomial approximation spaces 

The numerical results of 4th DOFs are compared in Fig 4.8 and Fig 4.9. In fig 4.8, errors 

of the optimized bases �1, �, sin�2 " �� , ����2 " ��� are smallest among all of approximate 

bases shown on the fig based on 10 < 10 grids.  This property agrees with the previous 

analysis that the optimized hybrid bases shows better dispersion and dissipation properties 

when non-dimensional wave numbers of the schemes are given in a certain range. In Fig 4.9 

the optimized base still performs better than the corresponding polynomial base based on 
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20 < 20 grids. The difference between the optimized hybrid base and the other hybrid bases 

becomes smaller. It can be expected that the polynomial base will perform best when the 

grids are fine enough.   

     

Figure 4.8. Pressure distribution at � �  0.5 on 10 < 10 grids with ∆= � 0.0001�, > � 0.3@ 

for 4 DOFs 

 

Figure 4.9. Pressure distribution at � �  0.5 on 20 < 20 grids with ∆= � 0.0001�, > � 0.3@ 

for 4 DOFs 
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Figure 4.10. Pressure distribution at � �  0.5 on 5 < 5 grids with ∆= � 0.0001�, > � 0.3@ 

for 6 DOFs 

 

Figure 4.11. Pressure distribution at � �  0.5 on 10 < 10 grids with ∆= � 0.0001�, > �
0.3@ for 6 DOFs 
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��, ����3.0 " ��, ����4.5 " ��, ����4.5 " ��� performed better than the optimized base 
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corresponding polynomial bases. It is clear that when the grids become fine enough, the 

polynomial bases will perform best. These results agree with our previous Fourier analysis, 

that the optimized hybrid bases show advantages in a certain non-dimensional wave number 

range. It is obvious that the more Fourier components there are, the more accurate results 

there are.  
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CHAPTER 5.  GRID RESOLUTION STUDY FOR VISCOUS FLOW  

In this chapter, extensive grid resolution studies are performed for both 1D and 2D 

viscous burger’s equations with exact solutions, with the objective of understanding the mesh 

size requirement to resolve a viscous boundary layer using high-order methods. It is well 

known that the mesh size, which is defined from non-dimensional wall distance �� � 1, 

gives accepted results to simulate viscous boundary layer problem for 2nd order finite volume 

method. For high-order CPR formulation, what grid size �� is required to match the results 

from the 2nd order finite volume method with �� � 1.  
1D and 2D burger’s equation are used as the viscous boundary layer model problem. Skin 

friction is used as the indicator of accuracy for the resolution of a boundary layer. LDG is 

employed to discretize the diffusion term to achieve the �� N 1�=O order of accuracy with a 

degree � polynomial approximation.  

5.1  1D Convection and Diffusion Equation 

5.1.1 Introduction to 1D Convection and Diffusion Equation 

1D viscous burger’s equation, which is solved as a boundary layer problem, is given as 

follows 

A� N A · A× � øA×× � 0,        � f �0,1�                                              �5.1� 

with the following initial and boundary conditions: 

A��, 0� � �=��O ¦ �2ø§                                                                �5.2� 

A�0, =� � 0,         A�1, =� �  �=��O ¦ 12ø§                                         �5.3� 
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The problem has the following exact solution: 

A��, 0� � �=��O ¦ �2ø§                                                                �5.4� 

where ø � 0.01.  

 

Figure 5.1 Exact solution of A given in (5.4) 

As we known, the viscous boundary layer regions remain closed to the body surface. The 

exact solution �5.4� in Fig 5.1 shows a boundary layer characteristic, because the velocity 

changes to a constant value in a small regions closed to the initial �-coordinates. We use this 

1D viscous burgers equation to study the grid resolution for various orders of CPR 

formulation. In the boundary layer, the skin friction coefficient Ãy is defined as 

Ãy �  ùú12 îûI#                                                           �5.5� 

where ùú is the local shear stress, î � 1 is the fluid density and ûI  is the free-stream 

velocity (usually taken outside of the boundary layer or at the inlet). The wall shear stress ùú 
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ùú �  ø ¦PAP�§×[�                                                            �5.6� 

where ø is the dynamic viscosity, and A is the flow velocity parallel to the wall. In this case, 

the wall is referred to � �  0, the A is the flow velocity.  And ûI � �1 is the velocity 

outside of the boundary layer. Non-dimensional wall distance for a wall-bounded flow is 

defined in the following way 

�� � ∆� " Aüý                                                             �5.7� 

where Aü is the friction velocity at the nearest wall, ∆� is the distance to the nearest wall and 

ý is the local kinematic viscosity of the fluid. �� is often referred to simply as y plus and 

commonly used in boundary layer theory and defining the law of the wall.  

The friction velocity Aü is defined as  

Aü � ÷ùú/î                                                              �5.8� 

In order to get the skin friction coefficients based on the non-dimensional wall distance, steps 

are given here to follow.  

• Step 1, set non-dimensional wall distance �� � 1 to derive ∆�, which is the distance to 

the wall.     

�� � ∆� " Aüý � 1 þ  ∆� � �� " ýAü � ýAü                                �5.9� 

Substitute �5.8� into �5.9� to get the following equation 

∆� � ýAü � ý÷ùú/î                                                        �5.10� 

Apply �5.6� into �5.10� to get 
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∆� � ý÷ùú/î � ý
�ø rPAP�s�[� /î                                           �5.11� 

• Step 2, set ∆� as the grid size, which is derived from the exact solution, as a grid size to 

calculate the shear stress for different order of CPR schemes and 2nd order finite volume 

scheme.   

• Step 3, different grid size ∆�  are found for different order CPR formulation to achieve a 

certain skin friction. 

5.1.2 Different Viscous discretization Methods 

Treatment of viscous terms has been discussed in chapter 2. In this section, two different 

viscous formulations are tested. The first formulation is the BR1 [9], the other formulation is 

the LDG [28].   

5.1.2.1  Bassi-Rebay 1 (BR1)  

Bassi and Rebay [9] proposed a method to discretize the diffusion term, which is named 

as BR1. Both unknown and its gradient are approximated in the polynomial approximation 

functions. Both the common numerical flux and auxiliary variable � are taken as the average 

between the two interface states.  

AYGl� � AY� N AY�2         and          �YGl� � �Y� N �Y�2                        �5.12� 

The accuracy of the 4th order CPR formulation is tested in this case. Gauss-Lobatto 

point distribution is applied. The polynomial approximations space is used as the 

approximation reconstruction. The HI and HJ errors are presented in Table 5.1.  
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Table 5.1. The HI and HJ errors and orders of accuracy with BR1 method 

Degree of Freedom  a� HI Error HI order HJ errors HJ order 

4 0.04 4.7334e-02  7.9359e-04  

 0.02 7.3279e-03 2.69 9.1589e-05 3.12 

 0.01 6.7790e-04 3.43 7.6026e-06 3.59 

 0.005 7.5080e-05 3.17 7.9769e-07 3.25 

 0.0025 8.4658e-06 3.15 7.4540e-08 3.42 

 These results did not match the expected the order of accuracy. It has been verified 

numerically in [79, 113], that this formulation leads to numerically stable but incorrect 

solutions. From the table 5.1, we can see that the numerical solutions seem to converge with 

mesh refinements but lost more half order of accuracy, especially for HI errors. If one does a 

mesh refinement study without knowing the exact solution, one could conclude the method is 

convergent. If the method is used to solve the complicated Navier-Stokes equation, one could 

not be able to tell the result is wrong. This kind of results is very dangerous.  

5.1.2.2  LDG Formulation  

For the diffusion terms, the central fluxes (average values between the two interface 

states) is applied in the last section, but it turns out inconsistent solutions. In order to remedy 

the first formulation, the LDG method is applied as the second formulation to discretize the 

diffusion terms.  

• The numerical flux function A is defined as the left values of the interface states and the 

right value between the two interface states, i.e., as  
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AYGl� � AY�           and            �YGl� � �Y�                              �5.13� 

We also can alternately take the left and right limits for the flux in A and �. In other words, 

AY� and �Y� are taken as the fluxes.   

In Table 5.2, for illustration purpose that the HI and HJ errors are numerically observed 

orders of accuracy until convergence. Note that the LDG approach is capable of achieving 

the optimum �� N 1�th order of accuracy in this case. For the following analysis, the LDG 

method is applied. 

Table 5.2. The HI and HJ errors and orders of accuracy with LDG method 

Degree of Freedom  a� HI Error HI order HJ errors HJ order 

4 0.04 2.3207e-02  3.4881e-04  

 0.02 4.0084e-03 2.53 3.4244e-05 3.35 

 0.01 2.3361e-04 4.10 1.8618e-06 4.20 

 0.005 1.8334e-05 3.67 1.1231e-07 4.05 

 0.0025 1.1745e-06 3.96 7.0211e-08 4.00 

5.1.3 Grid Resolution Study 

The 2nd order finite volume method is applied to compare with various orders of CPR 

schemes. Both node center and cell center finite volume schemes are considered. The face 

flux term is replaced with a common Riemann flux 

TY�J/# � TY N TY�J2  �  12 �A®Y�J/#��AY�J � AY�                           �5.16� 
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where A®Y�J/# � �AY N AY�J�/2 and T � A#/2. Monotone upstream-centered schemes for 

conservations laws (MUSCL) approach is applied for the variable extrapolation approach. 

The second-order upwind MUSCL approach is given as follows  

AY�J/#| � AY N 12 " �AY�J � AY�; AY�J#� � AY�J � 12 " �AY�# � AY�J�;
AY�J/#| � AY�J N 12 " �AY � AY�J�; AY�J#� � AY � 12 " �AY�J � AY�;           �5.17� 

Table 5.3. The HI and HJ errors for 2nd order node center finite volume method 

a� HI Error HI order HJ errors HJ order 

0.01 2.8426e-02  1.0660e-03  

0.005 9.16 04e-03 1.63 3.1111e-04 1.78 

0.0025 2.4849e-03 1.88 8.3827e-05 1.89 

0.00125 6.4535e-04 1.95 2.1674e-05 1.95 

Table 5.4. The HI and HJ errors for 2nd order cell center finite volume method 

a� HI Error HI order HJ errors HJ order 

0.01 2.8565e-02  1.0205e-03  

0.005 9.0022e-03 1.67 3.0877e-04 1.72 

0.0025 2.4928e-03 1.85 8.3674e-05 1.88 

0.00125 6.4517e-04 1.95 2.1654e-05 1.95 

 

where � and u represent left and right values between the control volume interfaces.  

In Table 5.3 and 5.4, the HI and HJ errors for 2nd order node center and cell center finite 

volume method are presented. Both FV methods achieve the expected order of accuracy.  
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5.1.3.1  Skin Friction Comparison based on Certain Grid Sizes  

As we mentioned previously, the skin friction is used as the indicator of accuracy for the 

resolution of a boundary layer. The procedures how to get the skin friction are given as 

follows, which have been mentioned in section 5.1.1.  

The dimensionless wall distance �� � 1, �� � ∆×"¥�
� � 1 þ  ∆� � �¥� and Aü � ÷ùú/î  þ

 ∆� � �÷ü�/� and set ø � 0.01, î � 1.0. Analytical result is obtained from the exact solution 

A��, =� �  �=��O r �#�s. The wall shear stress is given as follows  

|ùú| � ø ÖPAP�Ö�[� � |0.01 " ��50�| � 0.5                                     �5.18� 

So the skin friction is given as  

Ãy � ùú12 îûI# � 1.0                                                             �5.19� 

The friction velocity Aü is given as 

   ×Y�|ØÙÚÛÛÛÜ   Aü � ÷ùú/î � √0.5 � 0.7071                                        �5.20� 

∆� corresponding to �� � 1 is given as 

∆� �  �� " ýAü � 1.0 " 0.010.7071 � 0.01414                                      �5.21� 

 There are �� N 1� degrees of freedom within one element for  �� N 1�=O order CPR 

formulation. To make a fair comparison between skin frictions of the finite volume schemes 

and those of the CPR formulation, the ∆� should be scaled with a factor �� N 1�, to take into 

account the higher number of degrees of freedom used by the CPR formulation.  
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Table 5.5 Skin frictions comparison  

with ∆� �  0.01414 ��� � 1� 

 FV 1 FV 2 2nd order 
CPR 

3rd order 
CPR 

4th order 
CPR 

5th order 
CPR 

6th order 
CPR ∆� 0.01414 0.01414 0.01414*2 0.01414*3 0.01414*4 0.01414*5 0.01414*6 

SF 0.9034 0.9784 0.9712 0.9996 1.0000 1.0000 1.0000 

 In table 5.5, ∆� �  0.01414 is set as the grid size to calculate skin frictions. SF represents 

skin friction, and FV1 and FV2 represent 2nd order node and cell center finite volume 

methods, respectively. It is obvious that the higher order CPR schemes achieve better results.  

5.1.3.2  
� Comparison based on Certain Skin Friction 

 In Table 5.6 and 5.7, ∆� are compared for different order CPR schemes with a certain 

skin friction. In Table 5.6, the skin friction is equal to 0.9034 for 2nd order node center FV 

method, when �� � 1. For the same skin friction, �� is equal to 39.6322 for 6th order CPR 

schemes. In Table 5.7, the skin friction is equal to 0.9784 for 2nd order cell center FV 

method, when �� � 1. For this skin friction, �� is equal to 23.6351 for 6th order CPR 

schemes. This means that when a certain skin friction is required, a larger grid size is needed 

for high order CPR schemes. All of calculation is based on polynomial reconstruction and 

uniform point distribution within each element for CPR method. 

 For this 1D convection-diffusion problem the boundary layer is K � 0.054 when A �
0.99 from the exact solution �5.4�. The boundary layer K � 0.054 is set as the grid size to 

compute the skin friction for both 2nd finite volume method and various order CPR 
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formulation. In Table 5.8, the skin frictions are presented. It is obvious that the higher order 

the CPR formulation is and the larger skin friction is. 

Table 5.6 �� comparison with a fixed skin friction SF = 0.9034 

 FV 1 FV 2 2nd order 
CPR 

3rd order 
CPR 

4th order 
CPR 

5th order 
CPR 

6th order 
CPR ∆� 0.01414 0.02960 0.02916*2 0.04706*3 0.0646*4 0.08228*5 0.0934*6 

�� 1.0000 2.0934 4.1244 9.9844 18.2744 29.0948 39.6322 

 

Table 5.7 �� comparison with a fixed skin friction SF = 0.9784 

 FV 1 FV 2 2nd order 
CPR 

3rd order 
CPR 

4th order 
CPR 

5th order 
CPR 

6th order 
CPR ∆� 0.00528 0.01414 0.01300*2 0.02386*3 0.03460*4 0.04515*5 0.05570*6 

�� 0.3734 1.0000 1.8388 5.0622 9.7880 15.9653 23.6351 

 

Table 5.8 Skin friction comparison 

 with the boundary layer K � 0.054 when A � 0.99 

 FV 1 FV 2 2nd order 
CPR 

3rd order 
CPR 

4th order 
CPR 

5th order 
CPR 

6th order 
CPR ∆� 0.054 0.054 0.054*2 0.054*3 0.054*4 0.054*5 0.054*6 

SF 0.1623 0.2828 0.2830 0.3766 0.4361 0.4694 0.4860 
 

5.1.3.3  Solution Points Distribution Study 

The point distribution influence within an element is studied in this section. In Table 5.9, 

the uniform and Gauss-Lobatto point distribution are presented with comparison to the 2nd 

order FV methods. The uniform point and Gauss-Lobatto point distribution values in the 
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standard local coordinates are �: B�1, �1/3, 1/3, 1C and �: m�1, �√5/5,√5/5, 1n, 
respectively. In Table 5.9, Gauss-Lobatto point distribution shows a better result than the 

uniform point distribution. 

Table 5.9. �� comparison with the fixed skin friction SF = 0.9784 

for different point distribution 4th order CPR 

 FV 1 FV 2  Lobatto points uniform points 

∆� 0.00528 0.01414 0.03460*4 0.03380*4 

�� 0.3734 1.0000 9.7880 9.5615 

Table 5.10. �� comparison with the fixed skin friction SF = 0.9784 

 for 4th order CPR with different point distribution  

 FV 2 d1 d2 d3 d4 d5 

∆y 0.01414 0.03380*4 0.03415*4 0.03460*4 0.03480*4 0.03505*4 

y� 1.00 9.56 9.68 9.79 9.84 9.92 

Table 5.11. �� comparison with the fixed skin friction SF = 0.9784  

for 4th order CPR with different point distribution 

 FV 2 d6 d7 d8 d9 d10 

∆y 0.01414 0.03505*4 0.03630*4 0.03820*4 0.03960*4 0.04138*4 

y� 1.00 9.92 10.28 10.80 11.20 11.71 

Table 5.10 and 5.11 show �� comparison based on different point distribution 

�: B�1, �a, a, 1C. a is changed from small to large, in other words, from uniform values to 
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the values closed to element interface. In table 5.10, d1 = 0.3333, d2 = 0.3903, d3 = 0.4472, 

d4 = 0.4736 and d5 = 0.5000. In table 5.11, d6 = 0.5000, d7 = 0.6000, d8 = 0.7000, d9 = 

0.7500, and d10 = 0.8000. It is obvious that when the a approaches to the boundary of the 

element, the required y� beomes larger.   

Convergent histories are presented in Fig 5.2 for different point distribution based on grid 

size ∆� � 0.01414 " 4, which corresponds to �� � 1 for each degree of freedom for 4th 

order CPR formulation. When the point distribution is approaching to the element interface, 

the convergence is slow as a compromise for the more accurate results.   

 

Figure 5.2. Comparison of convergence history for different point distributions with  �� � 1 

for each DOF 

5.2  2D Convection and Diffusion Equation 

5.2.1 Introduction to 2D Convection and Diffusion Equation 

In this section, extensive accuracy studies were carried out for 2D convection and 

diffusion equation. Following a similar procedure for 1D viscous burgers equation, 2D 
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viscous burgers equation are designed to test the resolution for different order CPR 

formulation with exact solutions.  

We use the similar manufactured solution of Sun [78]. The convection-diffusion equation 

has its inviscid and viscid fluxes defined as TY � &UA and T� � ø · RA, respectively, where &U 
is the advection and ø is isotropic, its notation is replaced by a scalar ø. The convection 

velocity is set as uniform and horizontal with a unit magnitude for the linear viscous burgers 

equation and a diffusivity of ø �  10� is employed. The computational domain is 

rectangular box of B0.05,1.05C < B0,0.001C to avoid the leading edge singularity problem. 

This 2D convection-diffusion equation is defined as  

 

Figure 5.3 Exact solution of A given in �5.23� 
A� N A� � ø�A�� N A××� � 0                                                   �5.22� 

A source term is added such that the exact solution to this problem has a form of  

û � 1 � M �×
√G��                                                             �5.23� 
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with � � 0.59. This solution is shown in Fig 5.3 and represents a thin boundary layer 

growing with √� along the bottom wall. It has a thickness of K�.�� � 8 " 10�ä at the inflow 

and 3.6 " 10�$ at the outflow. Note that the leading edge of the boundary layer is not 

included in the computation domain.  

5.2.2 Method of Manufacture Solutions (MMS) 

In order to assess the accuracy of the discretization methods of the previous section, exact 

solutions are required. To address this problem, Roache [75] proposed the Method of 

Manufactured Solutions, which provides a general procedure for generating an analytical 

solution for code accuracy verification. The method is straightforward and leaded to 

complete and final code verification. The basic idea of the procedure is to manufacture an 

exact solution without being concerned about its physical realism. A continuum solution 

independent of the code or of the hosted equations is picked up and be used to verify codes. 

A non-trivial analytical solution which exercises all ordered derivatives is used. In MMS, 

instead of solving equation �5.22� directly, we solve the equation augmented with an 

analytical source term, 

A� N A� � ø�A�� N A××� � ���, ��                                        �5.24� 

Once an arbitrary manufactured solution is selected, the source term is found by substituting 

the exact solution into the original continuous differential equation and setting the source 

term to the remainder. The source term is not a function of A, but is only a function of the 

independent variables and parameters of the PDE. The chosen exact solution �5.23� is used.  
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We determine the source term ���, �� which, when added the Burgers equation for 

A��, ��, produces the exact solution. We write the Burgers equation as an operator (linear) of 

A, 

H�A� � A� N A� � ø�A�� N A××�                                     �5.25� 

We evaluate the A that produce the exact solution by operating on the exact solution with 

H�A�. Substitute the exact solution into equation �5.37� to get the source term ���, ��. 

���, �� �  H�û� � û� N û� � ø�û�� N û××�                      �5.26� 

Matlab symbolic calculation is applied here to get ���, �� as following 

���, �� � 4�#  N �#  �  2��ø#�$���ø��ä#  � 3��ø����
��ø��ä# " _4���M ×�G�����`        �5.27� 

Then we now solve the modified equation 

H�A� j A� N A� � ø�A�� N A××� � ���, ��                                 �5.28� 

Or  

A� � �A� N ø�A�� N A××� N ���, ��                                   �5.29� 

with compatible initial and boundary conditions, the exact solution will be û��, �� given by 

�5.35�.   

5.2.3 Grid Resolution Study  

The computational domain is divided into rectangular elements ±i� by lines � � �i and 

� � ��, i.e., ±i� � B�i, �i�JC < B��, ���JC. The basis in this section is formed by a tensor 

product of one-dimensional polynomial basis. In table 5.12, the HI and HJ errors are 
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presented. Note that the approach is capable of achieving the optimum 4th order of accuracy 

with degree 3 polynomial reconstruction.  

Table 5.12 The HI and HJ errors and order of accuracy for 4th order CPR  

Grid size HI Error Order HJ Error Order 

20x10 2.354e-01  1.134e-03  

40x20 4.239e-02 2.47 1.207e-04 3.23 

80x40 5.478e-03 2.95 1.018e-05 3.56 

160x80 4.826e-04 3.50 7.455e-07 3.77 

320x160 3.188e-05 3.92 4.692e-08 3.99 

 

  

Figure 5.4. Skin frictions comparison with different grids in �-direction for 4th order CPR 

In Fig 5.4, numerical skin frictions are presented for three different grids B5 < 5C, B5 <
10C, and B5 < 20C compared with  the skin frictions from the exact solution with 4th order 
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CPR formulation.  We kept the same grids in the �-direction, and use different grids in the �-

direction. It is obvious that the finer grids gave better numerical results.  

In Fig 5.5, numerical skin frictions are presented for three different grids B5 < 5C, B10 <
5C, and B20 < 5C compared with  the skin frictions from the exact solution with 4th order CPR 

formulation.  We kept the same grids in the �-direction, and use different grids in the �-

direction. It is obvious that there is no big difference for different grid size.  

In Fig 5.6, numerical skin frictions are presented for 2nd, 4th and 6th order CPR 

formulation for grids B5 < 5C compared with the skin frictions from the exact solution. Of 

course the higher order formulations give better numerical results.  

The numerical skin frictions of various order CPR formulation are studied for more 

details. If we set � �  1.05, the exact solution is  

A � 1 � M� ×÷Õ�"J.�ä                                                       �5.43� 

The wall shear stress is given as follows  

|ùú| � ø ÖPAP�Ö�[� � |1.0M � 08 " 1.7554M N 04| � 1.2705M � 04      �5.44� 

So the skin friction is given as  

Ãy � ùú12 îûI# � 2.5410M � 04                                              �5.45� 

The exact solution has a thickness of K�.�� � 3.6M � 04 at � �  1.05. If we set  

K�.��∆� � 4     ×Y�|ØÙÚÛÛÛÜ    ∆� � K�.��4 � 9.0M � 05                         �5.46� 
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then ∆� � 9.0M � 05 is set as a grid size to calculate skin frictions for different orders of  

CPR formulation at � �  1.05. In this case, there are 4 cells inside the boundary layer. 5th 

order CPR formulation’s result is very close to the exact result. 

 

Figure 5.5. Skin frictions comparison with different grids in �-direction for 4th order CPR  

 

Fig 5.6. Skin friction comparison with different order CPR formulation for grid B5 < 5C 
If we set 2 cells inside the boundary layer 
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K�.��∆� � 2     ×Y�|ØÙÚÛÛÛÜ    ∆� � K�.��2 � 1.8M � 04                        �5.47� 

∆� � 1.8M � 04 is set as a grid size to calculate the Skin frictions for different orders of CPR 

formulation at � �  1.05 in table 5.14. 5th order CPR formulation provides a result close to 

the exact solution.  

Table 5.13 Skin frictions comparison 

with ∆� �  9.0M � 05 

 2nd order 
CPR 

3rd order 
CPR 

4th order 
CPR 

5th order 
CPR 

6th order 
CPR ∆� 9.0e-05 9.0e-05 9.0e-05 9.0e-05 9.0e-05 

SF 1.7962e-04 2.4734e-04 2.5371e-04 2.5410e-04 2.5411e-04 

Error(%) 29.31% 2.66% 0.15% 0% 0% 

Table 5.14 Skin frictions comparison 

with ∆� �  1.8M � 04 

 2nd order 
CPR 

3rd order 
CPR 

4th order 
CPR 

5th order 
CPR 

6th order 
CPR ∆� 1.8e-04 1.8e-04 1.8e-04 1.8e-04 1.8e-04 

SF 1.1534e-04 2.1569e-04 2.4792e-04 2.5418e-04 2.5411e-04 

Error(%) 54.60% 15.12% 2.43% 0.03% 0.0004% 
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CHAPTER 6.  CONCLUSION AND FUTURE WORK 

The CPR (Correction Procedure via Reconstruction) method with a hybrid discontinuous 

space is studied. The hybrid space includes polynomial and Fourier bases. Although the 

piecewise polynomial bases are general used as local spaces in most discontinuous methods, 

they may not always provide the best approximation to the solutions for some specific 

problems. For the boundary layer problems, exponential functions achieved better results 

than the classic polynomial functions due to the large slope of the solution near the boundary. 

For the highly oscillatory problems, the trigonometric functions provide better approximation 

because of high wave numbers. In our proposed method, hybrid bases are applied. The 

polynomial bases are used in order to keep a certain order of accuracy, on the other hand the 

Fourier bases are applied with the objective of resolving broad-band wave propagation. Due 

to Fourier spaces, the exact dispersion relation Ω � 
 is exactly satisfied at a certain 
. Free-

parameters are optimized to minimize both dispersion and dissipation errors. This method is 

named as frequency optimized CPR formulation (FOCPR).  

In the one-dimensional analysis, free-parameters in the Fourier bases are optimized to 

minimize both dispersion and dissipation errors by mimicking the similar idea of dispersion-

relation-preservation (DRP) to maximize the resolvable wave number given a certain error 

threshold. The hybrid bases with optimized free-parameters show good wave propagation 

properties. A comparison was made with the dispersion and dissipation properties of the 

central and upwind DRP schemes in 1D. The four-point stencil optimized hybrid bases of 

CPR formulation is able to resolve waves with non-dimensional wave numbers as high as the 
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seven-point stencil central and upwind schemes. The more Fourier bases components are 

used, the less dispersion and dissipation errors the schemes show.  

Mesh resolution analysis is applied to verify the optimization of the hybrid bases. The 

number of grid points per wavelength (PPW) is presented with the objective of accurately 

simulating wave propagation over larger distance. The PPW analysis matches the 

optimization perfectly, and both methods can be used to verify each other. More Fourier 

terms are there, the fewer PPW are required. Because the optimized schemes are optimized 

for a given range of wave number, they required fewer PPW if the propagation distance is 

relative short. As the number of wavelength traveled increase, the advantage of the optimized 

schemes diminished as the required PPW increase. However if fewer PPW is required, the 

use of optimized scheme not only gives most accurate results but also results in significant 

saving of CPU time. 

In the two-dimensional analysis, the tensor product bases are applied for the quadrilateral 

grids. The accuracy of the hybrid bases depends on different non-dimensional wave numbers. 

Both the dispersion and dissipation errors are largest in the direction of θ � 0 or  θ � 0/2. 

The dispersion relation in the direction θ � 0 or  θ � 0/2 is the same as the corresponding 

one-dimensional analysis.  

Several numerical tests are given to verify the wave propagation analysis. The designed 

spaces for CPR formulation exactly simulate the one-dimensional wave equation with a sine 

wave as the initial condition at some specific non-dimensional wave number. The method has 

been tested for Problem 1 in Category 1 (C1P1) on benchmark problem in the Fourth 

Computational Aeroacoustics (CAA) Workshop. It is shown that the scheme with optimized 

Fourier bases can resolve waves more accurately than the polynomial bases at 3.7 PPW. An 
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artificial “broadband” wave composes short, medium and long waves is used as an initial 

condition for the wave equation. The numerical results agree with the PPW analysis. The 

hybrid base performs better than the corresponding polynomial bases in some conditions. 2D 

acoustic wave problem is tested. It is verified again that the advantage of the optimized 

hybrid bases depend on the non-dimensional wave numbers.  

Extensive resolution studies were carried out for both 1D and 2D viscous burgers 

equations with the designed exact solutions to investigate the skin frictions for various order 

CPR formulation. For CPR method, two different formulations for the diffusion equations are 

studied. The first formulation is BR1 [9] formulation, the other formulation is the local 

Galerkin method (LDG) [21]. BR1 formulation did not match the expected the order of 

accuracy, while the LDG achieves �� N 1�=O order of accuracy with a degree ¤ polynomial 

reconstruction.  

For 1D viscous burger equation, the skin frictions are studied as the resolution study 

criteria.  For node center 2nd order finite volume method, the skin friction is equal to 0.9034 

when �� � 1. For the 6th order CPR formulation �� is equal to 39.6322, if the same skin 

friction is required.  For cell center 2nd order finite volume method when skin friction is equal 

to 0.9784, �� � 1. For the 6th order CPR formulation when skin friction is equal to 0.9784, 

�� can reach 23.6351. All of calculation is based on polynomial reconstruction and uniform 

point distribution within each element of CPR formulation. Different point distribution for 

CPR formulation is studied. When the points approach to the interface of each element, the 

better resolution results are obtained. Convergence histories show that the convergence is 

becoming slow when the points are close to the element interface as a compromise for the 

more accurate numerical results.  



www.manaraa.com

 78  

 

2D viscous burgers equation with an exact solution is designed to test the resolution for 

various order of CPR formulation.  Method of manufactured solutions (MMS) provides a 

general exact solution for accuracy verification. In MMS, instead of solving original equation 

directly, the equation with an analytical source term is solved. For this 2D equation, tensor 

products of one-dimensional polynomial and rectangular meshes are applied. The errors 

study shows that the approach is capable of achieving the �� N 1�=O order of accuracy with a 

degree � polynomial reconstruction. 

Numerical skin frictions are presented with various grids compared with the skin frictions 

from the exact solution. The finer grids gave better numerical results. And numerical skin 

frictions are presented for various order CPR formulation compared with the exact skin 

frictions. For our 2D benchmark problem, the error friction can achieve about 0.15% for 4th 

order CPR, when cells put inside the boundary layer at � �  1.05 and the skin friction is 

equal to the exact solution when 5th order of CPR formulation is applied, if there are 4 cells 

inside the boundary layer. If 2 cells inside the boundary layer at � � 1.05, the error of skin 

friction for 5th order of CPR formulation is 0.03%.  
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APPENDIX A.  DISCONTINUOUS GALERKIN METHOD 

The discontinuous Galerkin (DG) method is briefly reviewed in the present appendix. 

Hartmann [39] gave a nice overview of DG method, with studies of its stability for different 

governing convection-diffusion equations and superconvergence properties for certain 

functional of the DG solution.  

A.1 Framework of DG Method 

A short summary of the DG methodology is given as follows. The hyperbolic 

conservation law is considered.  

PQP= N R · TU�Q, RQ� � 0                                                      �A. 1� 

where TU�Q, RQ� is a flux vector. The domain is partitioned into non-overlapping sub-

domains XY, � � 1,… , �. On each of these cells, a set of basis function ]Y,v , x � 1, � , �, is 

introduced. Mostly these function are polynomials with a certain maximum degree �, which 

results in a scheme with order of accuracy � N 1. Other functions like e.g., trigonometric and 

exponential functions can be used as a set of basis functions too. A solution of the form is 

given as 

QY � { QY,v]Y,v
\

v[J                                                           �A. 2� 

QY,v are the DG solution variables. Applying the weighted residual form to element XY, we 

obtain 

^ ] _PQP= N R · TU�Q, RQ�`de aX � 0                                     �A. 3� 
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Using divergence theorem, (A.3) is  

aa= ^ ]Qde aX N ^ ]TU�Q, RQ� · �bUa@cde � ^ R] · TU�Q, RQ�de aX � 0          �A. 4� 

where PXY is the cell boundary interface and �bU denotes the unit outward normal vector. 

Since the normal flux is discontinuous across the interface of contiguous domains, a 

common numerical flux (the Riemann flux in the case of inviscid flow) is used to replace 

the normal flux based on the solutions and gradients on both element XY and its neighbor.  

TU�Q, RQ� · �bU � T��QY, RQY, QY�, RQY�, �bU�                                       �A. 5� 

where QY and RQY are the solutions and gradients on XY, QY� and RQY� are from the 

neighboring element. The inviscid flux is the Riemann flux depending on QY, QY� and the 

unit normal to ensure a coupling between neighboring cells.  

A.2 DG Basis Functions 

The basis functions ]Y,v should be specified to fully define a DG scheme. The stability 

and accuracy properties of the DG method only depend on the choice of the solution 

approximation space. Mostly, the space of polynomial with degree � or less is chosen, which 

leads to a �� N 1�=O order accuracy scheme for convection equations. Any set of complete 

basis polynomials can be used as basis functions, without changing the stability and accuracy 

properties of the DG schemes.  

Non-polynomial functions can be introduced as basis functions in order to better 

represent certain physical solutions. Yuan and Shu [109] used trigonometric and exponential 

functions in order to obtain better numerical results for specific types of PDEs and initial and 

boundary conditions.  

A.3 Viscous Treatment for DG Method 
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The discretization of diffusive terms with the DG method has been discussed by many 

researches over the past decade. Different approaches were developed, which include the 

local DG approach by Cockburn and Shu [28], different approaches by Bassi and Rebay [8-

10], interior penalty approaches proposed by Douglas and Dupont [33], the approach of 

Baumann and Oden [71] and the recovery methods by Van Leer et al. [96]. The interested 

reader is referred to relative works for detailed description of all these discretization 

techniques for diffusive terms with the DG method. 
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APPENDIX B.  SPECTRAL VOLUME METHOD 

The spectral volume (SV) method is briefly reviewed in this appendix. Readers can refer 

to [100] to get more details of SV method.  

B.1 Framework of SV Method 

The SV method uses averages over control volumes (CVs) as solution variables like the 

FV method. In the SV method, each simplex element XY called a spectral volume, is 

partitioned into sub-cells XY,v called control volumes (CVs), as shown in Fig. A.1. We 

consider the following conservation laws 

PQP= N R · TU�Q� � 0                                                      �B. 1� 

Integrating (B.1) on a spectral volume (SV) XY, we obtain 

^ PQP= aX N� TU�Q� · �bUa@ � 0                                        �B. 2�cde,�de  

�bU is the unit outward normal of PXY,v. Define the CV averaged conservative variables for XY 
as  

Q®Y,v � � QaXde,��XY,v�                                                                 �B. 3� 

where �XY,v� is the volume of XY,v. The (1.20) becomes 

aQ®Y,va= �XY,v� N { TU�A� · �bUa@ � 0                                        �B. 4� yfcde,�  

� represents the face. Q®Y,v are the DOFs, which are used to construct a degree � polynomial 

using the following equation  
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QY�uU� � { ]Y,v�uU�Q®Y,v�
v[J                                                    �B. 5� 

� is the sub-cells number. The “shape function” like polynomials ]Y,v�uU� associated with 

XY,v should satisfy 

1�XY,v� ^ ]Y,|aX � de,� Kv,|                                                           �B. 6� 

where Kv,| is the Kronecker delta. If the solution is sufficiently smooth, the polynomial is an 

�� N 1�=O order approximation of the solution. The reconstruction solutions are generally not 

continuous on the interface between two SVs, so a Riemann flux is used to take place the 

normal flux in this inviscid case.  

aQ®Y,va= �XY,v� N { ^ T��Q, Q�, �bU�a@ � 0yyfcde,�                         �B. 7� 

Since the solution is continuous inside the SV, the analytical fluxes are used for interior 

faces. The surface integral is computed using �� N 1�=O order Gauss quadrature formula, 

which is exact for degree � or less polynomials. If the governing equations are linear, the 

surface integral can be computed exactly because the flux vector is also a degree � 

polynomial.  

                    

                     (a)                                               (b)                                               (c) 

Figure B.1 Control volumes for (a) linear; (b) quadrature; (c) cubic SV in a triangle 
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B.2 SV Basis Functions 

Mostly, the space of polynomial with degree � or less is chosen like Lagrangian 

polynomials, with respect to CV-averaged values instead of pointwise values. This means 

that in general, the SV basis polynomials depend on the local geometry of the corresponding 

cell. Non-polynomial functions can also be introduced as basis functions like DG method.  

B.3 Viscous Treatment for SV Method 

Different treatments for the diffusive terms with the SV method are known in literature 

[79]. Most of them are derived from similar approaches that were developed for the DG 

method can be found in Arnold et al. [3]. The most popular three approaches are the local SV 

(LSV) approach based on the local DG (LDG) approach proposed by Cockburn and Shu 

[28], the second approach of Bassi and Rebay (BR2) proposed by Bassi and Rebay et al. [8] 

for DG, and the interior penalty (IP) method, see Douglas and Dupont [33].  
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APPENDIX C.  SPECTRAL DIFFERENCE METHOD 

An alternative to the SV method, which was discussed in the previous appendix, the 

spectral difference (SD) method is briefly reviewed in this appendix. Readers can refer to 

[63] to get more details of the SD method.  

C.1 Framework of SD Method 

In a SD method, two sets of grid points, i.e., the solution points and flux points are 

defined in each element. The solution points are the locations where the nodal values of the 

conservative variables Q are specified (usually Gauss quadrature points). Flux points are the 

locations where the nodal values of the fluxes are computed. The DOFs in the SD method are 

conservative variables at the solutions points. Fig C.1 displays the placements of the solution 

and flux points for the first to third order SD schemes.  

Let the position vector of the x=O solution point at cell � be denoted by uUY,v, and the �=O 

flux point at cell � be denote by uUY,h. Denote QY,v the solution at uUY,v. Given the soltuions at uUY,v, 

an piecewise degree � polynomial can be constructed using Lagrange-type polynomial basis, 

i.e.,  

¤Y�uU� � { HY,v�uU��
v[J QY,v                                                    �C. 1� 

where HY,v�uU� are the cardinal basis functions. With (C.1), the solutions of Q at the flux points 

uUY,v can be computed easily. Since the solutions are discontinuous across element boundaries, 

the fluxes at the element interface are not uniquely defined. The normal flux can be 

computed with approximate Riemann solver T��QY, QY�, �bU�.  Consider the face flux point 
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shown in Fig C.2, �bUJis denoted the outgoing normal from cell XY to cell 1. For this interface 

point, QY is computed from XY and QY� is computed from cell 1.  

 

 

 

 

 

(a)                                          (b)                                                    (c)                                   

Figure C.1. Solution (solid circles) and flux points (solid squares) for (a) 1st order (b) 2nd 

order (c) 3rd order SD in a triangle 

 

                                      �J             � 
                                      1                           i 

                                                                    �J 

 

                       �#        2 

 

 

Figure C.2.  Illustration of flux computation for face and corner points 

Since the tangential component of the flux does not affect the conservation property, we 

have the complete freedom in determining it at the face point. There are two options to define 

on the interface. One is to use the average two tangential components from both sides of the 



www.manaraa.com

 87  

 

interface, the other is to use its own tangential component. � is the unit vector in the 

tangential direction.  

For a corner flux point in cell XY, two faces (from cell XY) share the corner point, as shown 

in Fig 1.4. Let the unit normal of the two faces be �bUJ and �bU#. The normal components of flux 

T�J and T�# in �bUJ and �bU# directions and computed with a 1D Riemann solver in the normal 

directions. It is important to emphasize here that fluxes at cell corner points do not have 

unique values for all the cells sharing the corner. In spite of that, local conservation is 

guaranteed because neighboring cells do share a common normal flux at all the flux points. 

Once the fluxes at all the flux points are recomputed, they are used to form a degree �� N 1� 

polynomial, i.e., 

TUY�uU� � { �Y,|�uU�TUY,|                                             ����

|[J      �C. 2� 

where �Y,|�uU� are the set of cardinal basis functions defined by uUY,| and TUY,| � TU�uUY.|�. 

Obviously, the divergence of the flux at any point within the cell can be computed using  

R · TUY�uU� � { R�Y,|�uU� · TUY,|����

|[J                                        �C. 3� 

To update the solutions at the solution points uUY,v, we need to evaluate the divergence of these 

points, which can be easily computed according to  

R · TUY�uUY,v� � { R�Y,|�uUY,v� · TUY,|����

|[J                                        �C. 4� 

Finally the semi-discrete scheme to update the solution unknowns can be written as  

aQY,va= N { R�Y,|�uUY,v� · TUY,| � 0����

|[J                                       �C. 5� 
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The SD method for quadrilateral or hexahedral grid is similar to the staggered grid multi-

domain spectral method [58]. It is particularly attractive because all the spatial operators are 

1D in nature. In 2D, the solution and flux points are usually the Gauss and Gauss-Lobatto 

points. An obvious advantage of the SD method is that the formulation (C.5) does not 

involve any integrals. As a consequence, costly Gauss quadrature rules are avoided.  

C.2 SD Basis Functions 

In general, the space of polynomial is chosen like Lagrangian polynomials similar to DG 

and SV method. At the solution and flux points, the polynomial value should be equal to the 

solution and flux variables, respectively. The SD basis polynomials are thus Lagrangian � 

order polynomials with respect to the solution points. The flux basis polynomials are also 

Lagrangian polynomial with � N 1 degree. Notice that, unlike the SV basis polynomials, the 

SD solution and flux basis polynomials are always independent of the coordinate system.  

C.3 Viscous Treatment for SD Method 

Like with the SV method, the treatment of the diffusive terms with the SD method is 

derived from approaches that were developed for the DG method. Similar approaches for SV 

method are applied in SD method, which include the local SD (LSD) approach, 

corresponding to the LDG scheme for DG [28], the approach of Bassi and Rebay (BR2) [8], 

and the interior penalty (IP) approach [33].  
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APPENDIX D.  MATRIX DEFINITIONS 

In this appendix, we give the matrix that appear in Eqs (3.9) and (4.4) of section 3 and 4.  

For the one-dimensional equation (3.1), the upwind Riemann flux formulation �! � 1� is 

used. Let the weight function be W]|���|� � 1,2, � , ¤ N 1Z, where ¤+1 is the DOFs in each 

element, and � is the local coordinate � f B�1, 1C. The matrices in Eq. (3.9) are formed as  

��v�J � �2 " ��J " ]���1�]v�1�,        ��, x � 1,… , ¤ N 1�                      ��. 1�  

��v� � 2 " cÔ�����c� N 2 " ��J " ]���1�]v��1�,        � �, x � 1,… , ¤ N 1�          ��. 2�  

��J is the inversion matrix of �, and ��,v �  � ]����J�J ]v���a�  � �, x � 1, � , ¤ N 1�.  

 For the two-dimensional equation (4.1), the upwind Riemann flux formulation is also 

used. The matrices in Eq. (4.4) are given as follows 

�Yv�J � �� í0                                                                               �� �1 r e �
!��s " �1 r e �

!��s�2 " ��J " ]y#�Y,Ñ�J���1�]y#�v,Ñ�J��1�,      �� �1 r e �
!��s � �1 r e �

!��s%          ��. 3�  

�Yv� �
�� í0                                                                                                             �� �1 r e �

!��s " �1 r e �
!��s2 " cÔ���#��e,!����c� � 2 " ��J " ]y#�Y,Ñ�J���1�]y#�v,Ñ�J���1�, �� �1 r e �

!��s � �1 r e �
!��s% ��. 4�    

©Yv�J � �× í0                                                                               �� �2 r e �
!��s " �2 r e �

!��s�2 " ��J " ]yJ�Y,Ñ�J���1�]yJ�v,Ñ�J��1�,      �� �2 r e �
!��s � �2 r e �

!��s%          ��. 5�  
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©Yv� �
�× í 0                                                                                                         �� �2 r e �

!��s " �2 r e �
!��s2 " cÔ���#��e,!����c� � 2 " ��J " ]yJ�Y,Ñ�J���1�]yJ�v,Ñ�J���1�, �� �2 r e �

!��s � �2 r e �
!��s% ��. 6�  

where �1 denotes the rounded function, such as ����u�� � 1, ¤ N 1� in Matlab. �2 is given as 

�2��, ¤ N 1� � $��a��, ¤ N 1�,                �� ��a��, ¤ N 1� " 0¤ N 1,                               �� ��a��, ¤ N 1� � 0 %                �%. 7� 

Where mod is defined as complementation function, such as mod in Matlab. 

 

 

   



www.manaraa.com

 91 

 

BIBLIOGRAPHY 

1. M. Aftosmis, D. Gaitonde, T.S. Tavares, Behavior of linear reconstruction techniques on 

unstructured meshes, AIAA Journal 1995; 33(11): 2038-2049. 

2. W. Kyle Anderson, A grid generation and flow solution method for the Euler equations 

on unstructured grids, J. Comput. Phys 1994; 110: 23-38. 

3. D.N. Arnold, F. Brezzi, B. Cockburn, Marin LD. Unified analysis of discontinuous 

Galerkin methods for elliptic problems. SIAM. J. Numer. Anal 2001; 39:1749–79. 

4. Graham Ashcroft, Xin Zhang, Optimized prefactored compacted schemes, J. Comput. 

Phys. 190, pp. 459-477 (2003)  

5. H.L. Atkin, C.-W. Shu, Qudrature-free implementation of discontinuous Galerkin method 

for hyperbolic equations. AIAA Journal 1998; 36:775-82. 

6. D. Balsara, C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory 

schemes with increasing high order of accuracy, J. Comput. Phys. 160, pp. 405-452 

(2000). 

7. T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on 

unstructured meshes, AIAA Paper No. 89-0366, 1989 

8. F. Bassi, A. Crivellini, D.A. Di Pietro, S. Rebay, An artificial compressibility flux for the 

discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J. 

Comput. Phys. 218 (2006) 794-815 

9. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the 

numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys. 131 

(1997) 267-279. 



www.manaraa.com

 92 

 

10. F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the 

2D Euler equations. J.  Comput Phys 1997; 138:251-285. 

11. F. Bassi and S. Rebay, Numerical evaluation of two discontinuous Galerkin methods for 

the compressible Navier-Stokes equations. Int J Numer Methods Fluids 2002; 40(1):197-

207. 

12. F. Bassi and S. Rebay, Numerical solution of the Euler equations with a multiorder 

discontinuous  

13. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high-order accurate 

discontinuous finite element method for inviscid and viscous turbomachinery flows. In R. 

Decuypere and G. Dibelius, editor, Proceedings of 2nd European Conference on 

Turbomachinery, pages 99–108, Antwerpen, Belgium, 1997. 

14. C.E. Baumann, T.J. Oden, A discontinuous hp finite element method for convection-

diffusion problems. Comput. Methods Appl. Mech. Engrg., 175:311–341, 1999. 

15. C.E. Baumann, T.J. Oden, A discontinuous hp finite element method for the Euler and 

Navier–Stokes equations. Int J Numer Methods Fluids 1999; 31(1):79–95. 

16. R. Biswas, K.D. Devine, J.E. Flaherty, Parallel adaptive finite element methods for 

conservation laws, Appl Numer Math, 1994; 14: 255-283. 

17. J.P. Boris, D.L. Book, Flux corrected transport, 1 SHASTA, A fluid transport algorithm 

that works, J Comput Phys A 1973; 11: 38-69. 

18. Q.-Y. Chen. Partitions for Spectral (Finite) Volume Reconstruction in the Tetrahedron. J. 

Sci. Comput., 29(3):299–319, 2006. 

19. Q.-Y. Chen. Partitions of a simplex leading to accurate spectral (finite) volume 

reconstruction. SIAM J. Sci. Comput., 27(4):1458– 1470, 2006. 



www.manaraa.com

 93 

 

20. S. Christofi, The study of building blocks for essentially non-oscillatory (ENO) schemes, 

Ph.D thesis, Division of Applied Mathematics, Brown University, 1996. 

21. B. Cockburn, G.E. Karniadakis, C.-W. Shu, The development of discontinuous Galerkin 

methods. In : Cockburn B, Karniadakis GE, Shu CW, editor. Berlin: Springer; 2000. 

22. B. Cockburn, Shu C-W. TVB Runge-Kutta local projection discontinuous Galerkin finite 

element method for conservation laws II: general framework. Math Comput 1989; 

52:411-35. 

23. B. Cockburn, S Hou, C.-W. Shu. TVB Runge-Kutta local projection discontinuous 

Galerkin finite element method for conservation laws IV: the multidimensional case. 

Math Comput 1990; 54:545-81. 

24. B. Cockburn, S-Y Lin, C.-W. Shu, TVB Runge-Kutta local projection discontinuous 

Galerkin finite element method for conservation laws III: One-dimensional systems. J 

Comput Phys 1989; 84:90-113. 

25. B. Cockburn and C.-W. Shu, The Runge-Kutta local projection g J Discontinuous 

Galerkin finite element method for scalar conservation laws, In proceedings of First Fluid 

Dynamics Congress, University of Minnesota, Institute for Mathematics and its 

Applications Preprint Series # 388, July 1988. 

26. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin 

finite element method for conservation laws II: general framework, Math. Comput., 

52:411-435, 1989, 7, 221 

27. B. Cockburn, C.-W. Shu. The Runge-Kutta discontinuous Galerkin finite element method 

for conservation laws V: multidimentional systems. J Comput Phys 1998; 141:199-224. 



www.manaraa.com

 94 

 

28. B. Cockburn and C.-W. Shu, the local discontinuous Galerkin method for time-dependent 

convection diffusion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440-2463. 

29. B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for 

convectin-dominated problems,J. Sci. Comput., 16(3):173-261, 2001. 8 

30. B. Cockburn, F. Li, C.-W. Shu, Locally divergence-free discontinuous Galerkin methods 

for the Maxwell equations, J. Comput. Phys 194 (2004) 588-610 

31. Bruno Costaa, and Wai Sun Donb, Multi-domain hybrid spectral-WENO methods for 

hyperbolic conservation laws , J. compu phys. 224, pp. 970 – 991 (2007). 

32. V. Dolejsi, on the discontinuous Galerkin method for numerical solution of the Navier-

Stokes equations, Int. J. Numer. Meth. Fluids. 45, pp 1083-1106 (2004) 

33. J. J. Douglas and T. Dupont. Interior Penalty Procedures for Elliptic and Parabolic 

Galerkin Methods, In lecture Notes in Phys. 58, Berlin, 1976 

34. John A. Ekaterinaris, High-order accurate, low numerical diffusion methods for 

aerodynamics, progress in Aerospace Sciences 41 (2005) 192-300 

35. T. Haga, N. Ohnishi, K. Sawada, A. Masunaga, Spectral volume computation of 

flowfield in aerospace application using earth simulator. AIAA Paper No. 2006-2823, 

2006 

36. R. Harris, Z.J. Wang, Y. Liu, Efficient implementation of high-order spectral volume 

method for multidimensional conservation laws on unstructured grids, AIAA Paper No. 

2007-912, 2007. 

37. A. Harten, High-resolution schemes for hyperbolic conservation laws, J Comput Phys 

1983; 49: 357-393. 



www.manaraa.com

 95 

 

38. R. Hartmann and P. Houston, Symmetric interior penalty DG methods for the 

compressible Navier-Stokes Equations I: Method formulation, Int. J. Numer. Anal. 

Model. 3(1), pp. 1-20, (2006) 

39. R. Hartmann, 35th CFD/ADIGMA Course on Very High Order Discretization Methods, 

Chapter numerical analysis of higher order discontinuous Galerkin finite element 

methods, Von Karmann Institute for Fluid Dynamics, October 2008. 

40. O. Hassan, K. Morgan, J. Peraire, An implicit finite element method for high speed 

flows, AIAA Paper No. 90-0402, January 1990. 

41. R. Hixon, A new class of compact schemes, AIAA Paper, No. 98-0367, 1998. 

42. Changqing Hu, C.-W. Shu, Weighted essentially Non-oscillatory schemes on Triangular 

mehses, J. Comput. Phys, 150, pp. 97-127 (1999). 

43. Fang Q. Hu, M. Y. Hussaini, Patrick Rasetarinera, An analysis of the discontinuous 

Galerkin method for wave propagation problems, J. Comput. Phys. 151 (1999) 921-946 

44. P. G. Huang, Z. J. Wang, and Y. Liu. An implicit space-time spectral difference method 

for discontinuity capturing using adaptive polynomials, AIAA paper, 2005-5255, 2005 

45. TJR. Hughes, Recent progress in the development and understanding of SUPG methods 

with special reference to the compressible Euler and Navier-Stokes equations, Int J 

Numer Methods Fluids, 1987; 7: 1261-1275 

46. TJR. Hughes, LP. Franca, GM. Hulbert, A new finite element formulation for 

computational fluid dynamics: VIII. The Galerkin least squares method for advective-

diffusive equations, Comput Methods Appl Mech Eng 1989; 73: 173-189 



www.manaraa.com

 96 

 

47. TJR. Hughes, M. Mallet, A new finite element formulation for CFD: IV. A discontinuity-

capturing operator for multidimensional advective-diffusive systems, Comput methods 

Appl Mech Eng 1986; 58(3): 329-356 

48. H.T. Huynh. An upwind moment scheme for conservation laws. in: Groth, Zingg, editors. 

Proceedings of the third international conference of CFD, Toronto, Canada, 2004. 

49. H.T. Huynh, A flux reconstruction approach to high-order schemes including 

discontinuous Galerkin methods, AIAA paper 2007-4079.  

50. H.T. Huynh, A reconstruction approach to high-order schemes including discontinuous 

Galerkin for diffusion, AIAA-2009-403 

51. Henry Martin Jurgens, High-accuracy finite-difference schemes for linear wave 

propagation, Ph.D thesis, Department of Aerospace Science and Engineering, University 

of Toronto, 1997. 

52. M.K. Kadalbajoo, K.C.Patidar, Exponentially fitted spline in compression for the 

numerical solution of singular perturbation problems, Computers and mathematics with 

Applications 46 (2003) 751-767. 

53. R. Kannan, Y. Sun, and Z. J. Wang. A Study of Viscous Flux Formulations for an 

Implicit P-Multigrid Spectral Volume Navier-Stokes Solver, AIAA paper, 2008-783, 

2008 

54. Aaron Katz and Venkateswaran Sankaran, Mesh quality effects on the accuracy of CFD 

solutions on unstructured meshes, AIAA 2010 

55. C. M. Klaij, J. J. W. van der Vegt, and H. van der Ven. Space-time discontinuous 

Galerkin method for the compressible Navier-Stokes equations. J. Comput. Phys., 

217(2):589–611, 2006. 



www.manaraa.com

 97 

 

56. D.D. Knight, Elements of numerical methods for compressible flow, Cambridge: 

Combridge University Press; 2006 

57. D. A. Kopriva. A conservative staggered-grid Chebyshev multidomain method for 

compressible flows, II semi-structured method. J. Comput. Phys., 128(2):475–488, 1996. 

58. D. A. Kopriva and J. H. Kolias. A conservative staggered-grid Chebyshev multidomain 

method for compressible flows, J. Comput. Phys., 125(1):244–261, 1996. 

59. Lilia Krivodonova, Marsha Berger, High-order accurate implementation of solid wall 

boundary conditions in curved geometries. J Comput Phys 2006; 211(2):492–512. 

60. R.J. Leveque, Finite volume methods for hyperbolic problems, Cambridge: Cambridge 

University Press; 2002 

61. Yuguo Li, Wavenumber-Extended High-Order Upwind-Biased Finite-Difference 

Schemes for Convective Scalar Transport, J. Comput. Phys. 133, 235-255 (1997) 

62. S.Y. Lin and Y.S. Chin, Discontinuous Galerkin finite element method for Euler and 

Navier–Stokes equations. AIAA J 1993; 31(11):2016–26. 

63. Yen Liu, Marcel Vinokur, and Z.J. Wang, Discontinuous spectral difference methods for 

conservation laws on unstructured grids, in C. Groth and D.W. Zingg (Eds.), Proceeding 

of the 3rd international conference in CFD, Toronto, Springer, 2004, pp. 449-454 

64. Yen Liu, Marcel Vinokur, and Z.J.Wang, Spectral (finite) volume method for 

conservation laws on unstructured grids V: extension to three-dimensional system, J. 

Comput. Phys, 2006; 212: 454-472 

65. Yen Liu, Marcel Vinokur, and Z.J.Wang, Spectral difference methods for unstructured 

grids I. Basic formulation, J. comput phys. 216, pp. 780-801 (2006) 



www.manaraa.com

 98 

 

66. R. Lohner, K Morgan, OC. Zienkiewicz, An adaptive finite element procedure for 

compressible high speed flows, Comput Methods Appl Mech Eng 1985; 51: 441-465 

67. Igor Lomtev and G.E. Karniadakis. A discontinuous Galerkin method for the Navier–

Stokes equations. Int J Numer Methods Fluids 1999; 29(5):587–603. 

68. R.B. Lowrie, P.L. Roe and B. Van Leer, A space-time discontinuous Galerkin method for 

the time accurate numerical solution of hyperbolic conservation laws. AIAA Paper No. 

95–1658, 1995. 

69. Remaki Malika, Habashi W.G. A discontinuous Galerkin method/HLLC solver for the 

Euler equations. Int J Numer Methods Fluids 2003;43(12):1391–405. 

70. G. May and A. Jameson. A spectral difference method for the Euler and Navier-Stokes 

equations. AIAA paper, 2006-304, 2006. 

71. T.J. Oden, Ivo Babuska, C.E. Baumann, A discontinuous hp finite element method for 

diffusion problems. J Comput Phys 1998; 146(2):491–519. 

72. J. Peraire and P.-O.Persson, The compact discontinuous Galerkin (CDG) method for 

elliptic problems, SIAM J.Sci. Comput. 30, pp. 1806-1824 (2008) 

73. Y.N. Reddy, P.P. Chakravarthy, An exponentially fitted finite difference method for 

singular perturbation problems, Applied mathematics and Computation, 154 (2004) 83-

101. 

74. W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, 

Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory; 1973 

75. Patrik J. Roache, Code verification by the method of manufactured solutions, 

Transactions of the ASME, Vol. 124, 2002, pp. 4-10 



www.manaraa.com

 99 

 

76. Hai-qing Sia,*, Tong-guang Wangb, Grid-optimized upwind dispersion-relation-

preserving scheme on non-uniform Cartesian grids for computational aeroacoustics, 

Aerospace Science and Technology 12 (2008) 608-617. 

77. J.L. Steger, R.F. Warming, Flux vector splitting of the inviscid gas dynamics equations 

with application to finite difference methods; J Comput Phys 1981; 40: 263 

78. Huafei Sun, David L.Darmofal, and Robert Haimes, On the impact of triangle shapes for 

boundary layer problems using high-order finite element discretization, AIAA 2010-542 

79. Yuzhi Sun and Z.J. Wang, Formulations and analysis of the spectral volume method for 

the diffusion equation, Communications in numerical methods in engineering, 20:927-

937 (2004) 

80. Yuzhi Sun, Z.J.Wang, High-order spectral volume method for the Navier-Stokes 

equations on unstructured grids, AIAA 2004-2133 

81. Yuzhi Sun, Z.J.Wang, Yen Liu, Spectral (finite) volume method for conservation laws on 

unstructured grids VI: Extension to viscous flow, Journal of Computational Physics 215 

(2006) 41-58 

82. Yuzhi Sun, Z.J.Wang, Evaluation of discontinuous Galerkin and spectral volume 

methods for scalar and system conservation laws on unstructured grid, Int J Numer 

Methods Fluids, 2004; 45(8):819-838 

83. Y. Sun, Z. J. Wang, and Y. Liu. High-order Multidomain Spectral DifferenceMethod for 

the Navier-Stokes Equations on Unstructured Hexahedral Grids. Commun. Comput. 

Phys., 2(2):310–333, 2007. 

84. C. K. W. Tam, Computational Aeroacoustics: Issues and Methods , AIAA Journal, Vol. 

33, No. 10, 1995, pp. 1788-1796 



www.manaraa.com

 100 

 

85. C. K. W. Tam and J. C. Webb, Dispersion-Relation-Preserving Finite Difference 

Schemes for Computational Acoustics, J. Comput. Phys. 107 (1993) 262-281. 

86. Kris Van Den Abeele, Tim Broeckhoven, Chris Lacor, Dispersion and dissipation 

properties of the 1D spectral volume method and application to a p-multigrid algorithm, 

J. Comput. Phys. 224 (2007) 616-636. 

87. Kris Van den Abeele *,1, Chris Lacor, An accuracy and stability study of the 2D spectral 

volume method, J. Comput. Phys. 226, pp 1007-1026, (2007) 

88. K. Van den Abeele, G. Ghorbaniasl, M. Parsani, and C. Lacor. A stability analysis for the 

spectral volume method on tetrahedral grids, J. Comput. Phys., 228:257–265, 2009. 

89. Kris Van den Abeele, Chris Lacor, Z.J. Wang, on the connection between the spectral 

volume and the spectral difference method, J. Comput. Phys. 227 (2007) 877-885 

90. K. Van den Abeele, C. Lacor, and Z. J.Wang. On the stability and accuracy of the 

spectral difference method. J. Sci. Comput., 37(2):162– 188, 2008. 

91. K. Van den Abeele, M. Parsani, and C. Lacor. An Implicit spectral difference Navier-

Stokes solver for unstructured hexahedral grids, AIAA paper, 2009-0181:1–18, 2009. 

92. Kris Van den Abeele, Development of high-order accurate schemes for unstructured 

grids, Ph.D thesis, Department of Mechanical Engineering, Vrije Universiteit Brussel, 

Belgium, (2008) 

93. J.J.W. Van der Vegt, H. Van der Ven, Space time discontinuous Galerkin finite element 

method with dynamic grid motion for inviscid compressible flows: I. General 

formulation. J Comput Phys 2002; 182(2):546–85. 

94. B. Van Leer, Towards the ultimate conservative difference scheme. IV. A new approach 

to numerical convection. J. Comput. Phys., 23:276-299,1977. 



www.manaraa.com

 101 

 

95. B. Van Leer and M. Lo. Unification of Discontinuous Galerkin methods for Advection 

and Diffusion. AIAA paper, 2009-0400, 2009. 

96. B. Van Leer, M. Lo, and M. V. Raalte. A Discontinuous Galerkin Method for Diffusion 

Based on Recovery. AIAA paper, 2007-4083, 2007. 

97. B. Van Leer and S. Nomura. Discontinuous Galerkin for Diffusion. AIAA paper, 2007-

5108, 2005. 

98. Dolejsi Vit. On the discontinuous Galerkin method for the numerical solution of the 

Navier–Stokes equations. Int J Numer Methods Fluids 2004; 45(10):1083–106. 

99. Z. J. Wang* and R. F. Chen, Optimized Weighted Essentially Nonoscillatory Schemes 

for Linear Waves with Discontinuity, J. Comput. Phys. 174 (2001) 381-404 

100. Z.J. Wang, Spectral (finite) volume method for conservation laws on unstructured 

grids: basic formulation, J. Comput. Phys. 178 (2002) 210–251 

101. Z.J. Wang, Yen Liu, Spectral (finite) volume method for conservation laws on 

unstructured grids II: extension to two-dimensional scalar equation, J. Comput. Phys. 

179, pp. 665 – 697 (2002) 

102. Z. J. Wang and Y. Liu. Spectral (finite) volume method for conservation laws on 

unstructured grids III: One dimensional systems and partition optimization. J. Sci. 

Comput., 20:137–157, 2004. 

103. Z. J. Wang, L. Zhang, and Y. Liu. Spectral (finite) volume method for conservation 

laws on unstructured grids IV: Extension to two-dimensional Euler equations, J. Comput. 

Phys., 194(2):716–741, 2004. 

104. Z.J. Wang, Yen Liu, The spectral difference method for the 2D Euler equation on 

unstructured grids, AIAA Paper No. 2005-5112 (2005) 



www.manaraa.com

 102 

 

105. Z. J. Wang and Y. Liu. Extension of the spectral volume method to high-order 

boundary representation. J. Comput. Phys., 211:154– 178, 2006. 

106. Z.J. Wang, High-order methods for the Euler and Navier-Stokes equations on 

unstructured grids, Progree in Aerospace Sciences 43 (2007) 1-41 

107. Z. J. Wang1 and Haiyang Gao2, A Unifying Lifting Collocation Penalty Formulation 

for the Euler Equations on Mixed Grids, AIAA 2009-401. 

108. Z. J.Wang, Y. Sun, C. Liang, and Y. Liu. Extension of the SD method to viscous flow 

on unstructured grids. In Proceedings of the 4th international conference on computational 

fluid dynamics, Ghent,Belgium, July 2006 

109. Ling Yuan, C-W. Shu*, Discontinuous Galerkin method based on non-polynomial 

approximation spaces, J. Comput. Phys. 218 (2006) 295-323. 

110. D.W. Zingg, A review of high-order and optimized finite difference methods for 

simulating linear wave phenomena, AIAA Paper 97-2088 

111. M. Zhuang* and R. F. Chen, Optimized Upwind Dispersion-Relation-Preserving 

Finite Difference Scheme for Computational Aeroacoustics, AIAA Journal. Vol. 36, No. 

11, November 1998. 

112. M. Zhuang and R.F.Chen, Application of high-order optimized upwind schemes for 

computational aeroacoustics, AIAA Journal, Vol. 40, No.3, March 2002. 

113. Mengping Zhang and C.-W. Shu, An analysis of three different formulations of the 

discontinuous Galerkin method for diffusion equations, dedicated to professor Jim 

Douglas, Jr. on the occasion of his 75th birthday. 



www.manaraa.com

 103 

 

114. M. Zhang and C.-W. Shu, An analysis and a comparison between the discontinuous 

Galerkin method and the spectral finite volume methods. Comput Fluids 2005; 34(4-5): 

581-592.  

 


	2010
	Issures in Discontinuous High-Order Methods: Broadband Wave Computation and Viscous Boundary Layer Resolution
	Yi Li
	Recommended Citation


	Microsoft Word - $ASQ71637_supp_undefined_198B7A4E-00F1-11E0-AD12-2D039E1A67F9.docx

